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Abstract

Explainability of machine learning (ML) tech-
niques in digital pathology (DP) is of great signif-
icance to facilitate their wide adoption in clinics.
Recently, graph techniques encoding relevant bio-
logical entities have been employed to represent
and assess DP images. Such paradigm shift from
pixel-wise to entity-wise analysis provides more
control over concept representation. In this pa-
per, we introduce a post-hoc explainer to derive
compact per-instance explanations emphasizing
diagnostically important entities in the graph. Al-
though we focus our analyses to cells and cellular
interactions in breast cancer subtyping, the pro-
posed explainer is generic enough to be extended
to other topological representations in DP. Quali-
tative and quantitative analyses demonstrate the
efficacy of the explainer in generating comprehen-
sive and compact explanations.

1. Introduction
Convolutional Neural Networks (CNNs), so far the most suc-
cessful ML approach in image analysis, have been widely
adopted to assess DP images to improve diagnosis and pa-
tient outcome. However, concept representations of CNNs
remain unexplained in DP and thus hinder their adoption in
typical workflows. Therefore, explainable ML technolo-
gies in DP have become of paramount interest to build
trust and promote the employment of ML in clinical set-
tings (Holzinger et al., 2017).

Typically CNNs process complex and large DP images in a
patch-wise manner, followed by aggregating the patch-wise
learning to address downstream DP tasks. Recently, several
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research works have been devoted to demystify the concept
representations of CNNs in automated diagnosis. Patch-
level explainable methods (Graziani et al., 2018; Hägele
et al., 2019; Bruno et al., 2017; Mobadersany et al., 2017;
Cruz-Roa et al., 2013; Xu et al., 2017) build patch-level
heatmaps, where an importance score is computed per pixel
to identify the regions of importance. For instance, Hägele
et al. (2019) use layer-wise relevance propagation (Bach
et al., 2015) to generate positive scores for pixels that are
positively correlated with the class label and negative scores
otherwise. Such approaches have several limitations. First,
pixel-level heatmaps fail to capture the spatial organization
and interactions of relevant biological entities. Second,
the pixel-level analysis is completely detached from any
biological reasoning that pathology guidelines recommend
for decision making. Third, pixel-level explanation are
common in the form of blurry heatmaps, which then do not
allow to discriminate the relevance of nearby entities and
their interactions.

Recently, graph techniques have been adopted to map DP
patches to graph representations and process such graphs
for pathology tasks (Gunduz et al., 2004; Zhou et al., 2019;
Sharma et al., 2016; Gadiya et al., 2019; Wang et al., 2019;
Pati et al., 2020). Graph representations embed biological
entities and their interactions. To the best of our knowledge,
explainability of graph-based approaches for DP has not
been addressed yet. In this paper, a major step towards
explainability in DP is presented based on two proposals:
First, we advocate for shifting the analysis from a pixel-level
representation to a relevant biological entity/relationship-
oriented representation. The learning can then be regulated
to specific entities and interactions, aligned with the biolog-
ical and pathological knowledge. Second, we propose to
adopt an instance-level post-hoc explainability method that
extracts a relevant subset of entities and interactions from
the input graph. We define this subset as the explanation of
our original graph analysis. We hypothesize that the expla-
nation will be deemed useful if and when the subset aligns
with prior pathological knowledge. In this paper, we map
DP images to cell-graphs (Gunduz et al., 2004), where cells
and cellular interactions are represented as nodes and edges
of the graph, and focus on the interpretability of cell-graphs
towards cancer subtyping.
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Figure 1: A RoI is transformed into a CG, and is processed
by CGNN to predict the cancer subtype.

2. Methodology
In this section, we first present the extraction of graph rep-
resentations from DP images, and further present the Graph
Neural Network (GNN) framework for the processing of
the representations. Second, we introduce the explainability
module to acquire comprehensive explanations.

2.1. Cell-graph representation and learning

The DP images are transformed into cell-graph (CG) rep-
resentations. Formally, we define a CG, GCG = (V,E,H)
as an undirected graph composed of a vertices V and edges
E. Each vertex is described by an embedding h ∈ Rd, or
equivalently expressed in its matrix form as H ∈ R|V |×d.
The graph topology is described by a symmetric adjacency
matrix A ∈ R|V |×|V |, where Au,v = 1 if an edge exists
between vertices u and v.

To build CG, we detect nuclei at 40× resolution using
Hover-Net (Graham et al., 2019), a state-of-the-art nuclei
segmentation algorithm pre-trained on MoNuSeg dataset
(Kumar & et al., 2020). We extract 16 hand-crafted features
incorporating shape, texture and color attributes to represent
each nucleus as in (Zhou et al., 2019). We include centroid
location normalised by the image size to spatially encode
the nucleus. The detected nuclei and their 18-dimensional
embeddings serve as the node and initial node embeddings
of our CG. The CG topology assumes that spatially close
cells encode biological interactions and consequently should
form an edge. We use the k-Nearest Neighbors (kNN) al-
gorithm, i.e., for each node u, we build edges euv to the
k closest vertices v. As isolated cells have weak cellular
interaction with other cells, they ought to stay detached.
Thus, we threshold the kNN graph by removing edges that
are longer than a specified distance. We set k = 5 and the
distance threshold to 50 pixels in our modeling.

For the downstream DP task, we determine the breast can-
cer subtypes of regions-of-interest (RoIs). For a dataset
with N RoIs, we create D = {GCG,i, li}i={1,...,N} con-
sisting of N CGs and corresponding cancer stage labels
li. A GNN (Defferrard et al., 2016; Kipf & Welling, 2017;
Veličković et al., 2018; Xu et al., 2019), denoted as CGNN,
is employed to build fixed-size graph embeddings from the
CGs. These embeddings are fed to a Multi-Layer Percep-

Figure 2: Overview of CGEXPLAINER. The original CG is
iteratively pruned until convergence of the optimization.

tron (MLP) to predict the cancer stages. In particular, we use
the Graph Isomorphism Network (GIN) (Xu et al., 2019), an
instance of message passing neural network (Gilmer et al.,
2017). A block diagram with the main steps is presented in
Figure 1.

2.2. Cell-graph explainer

We propose a cell-graph explainer (CGEXPLAINER) in-
spired by the GNNEXPLAINER (Ying et al., 2019), a post-
hoc interpretability method based on a graph pruning opti-
mization. Considering the large number of cells in a RoI, we
hypothetize that many of them will provide little information
in the decision making, whereas others will be responsible
for class specific patterns that would allow better under-
standing of the disease. Thus, we prune the redundant and
uninformative graph components, and define the resulting
sub-graph as the explanation.

Formally, let us consider a trained GNN modelM, and a
sample {GCG, l} from D predicted as ŷ =M(GCG). We
aim to find a sub-graph Gs = (Vs, Es, Hs) ⊂ GCG such
that the mutual information between the original prediction
and the sub-graph is maximized, i.e.,

max
Gs

MI(Ŷ , Gs) = H(Ŷ )−H(Ŷ |GCG = Gs) (1)

which is equivalent to minimizing the conditional entropy:

H(Ŷ |GCG = Gs) = −EŶ |Gs
[log(PM(Ŷ |Gs))] (2)

Intuitively, Gs maximizes the probability of ŷ. Direct opti-
mization of Equation (2) is intractable due the combinatorial
nature of graphs. Therefore, the GNNEXPLAINER proposes
to learn a mask that activates or deactivates parts of the
graph. Considering the coherent pathological explainabil-
ity of cells compared to cellular interactions, we focus on
interpreting the cells in this work. Thus, we aim at learning
a mask MV at node-level that satisfies:

min
MV

−
C∑

c=1

1[y=c] log(PM(Ŷ |GCG, σ(diag(MV ))H)))

(3)
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where C denotes the number of classes, σ is the sigmoid
activation, and diag : R|V | → R|V |×|V | is the diagonal
matrix of the weight vectorMV . We intend the explanations
to be as compact as possible, ideally with binarized weights,
while providing the same prediction as the original graph.
Heuristically, we enforce these constraints by minimizing:

L = LKD(ŷ, y
(t)) + αMV

|V |∑
i

σ(M
(t)
Vi

) + αHHe(σ(M
(t)
V ))

(4)

where, t is the optimization step. First term is the knowledge-
distillation loss LKD between the new logits y(t) and the
original prediction ŷ. Second term ensures the compactness
ofMV . Third term binarizesMV by minimizing its element-
wise entropyHe. Following (Hinton et al., 2015), LKD is a
combination of distillation and cross-entropy loss:

LKD = λLCE + (1− λ)LDIST where λ =
He(y(t))

He(ŷ)
(5)

As the element-wise entropyHe(y(t)) increases, LCE gains
importance and avoids a change in predicted label. MV ,
produced by optimizing Equation (4), identifies important
nodes with a weight factor. An overview of the explainer
module is shown in Figure 2.

3. Experiments
3.1. Dataset

We evaluate CGEXPLAINER on BRACS dataset, an in-
house collection of BReAst Carcinoma Subtyping1 images.
The dataset consists of 2080 RoIs acquired from 106 H&E
stained breast carcinoma whole-slide-images (WSIs). The
RoIs are extracted at 40× magnification producing images
of various sizes and appearances. The RoIs are annotated by
the consensus of three pathologists as: normal (N), benign2

(B), atypical3 (A), ductal carcinoma in situ (D), and invasive
(I) (a 5-class problem). We also study two simplified sce-
narios: (1) a 2-class problem: benign (N+B) and malignant
(D+I) categories, and (2) a 3-class problem: benign (N+B),
atypical (A), and malignant (D+I) categories. These scenar-
ios allow us to study the relation between the task complex-
ity and the generated explanations. Non-overlapping train,
validation and test splits are created at WSI-level consisting
of 1356, 365, and 359 RoIs respectively.

3.2. Implementation details

The experiments are conducted using PyTorch (Paszke et al.,
2019) and the DGL library (Wang et al., 2019). The CGNN

1currently pending approval for releasing the dataset
2includes benign and usual ductal hyperplasia
3includes flat epithelial atypia and atypical ductal hyperplasia

consists of three GIN layers with a hidden dimension of 32.
Each GIN layer uses a 2-layer MLP with ReLU activation.
The classifier consists of a 2-layer MLP with 64 hidden
neurons that maps the hidden dimensions to the number of
classes. The model is trained using the Adam optimizer
with an initial learning rate of 10−3 and a weight decay of
5× 10−4. The batch size is set to 16.

The explanation module uses the trained CGNN. The mask
MV is learned by using the Adam optimizer with a learning
rate of 0.01. The size constraint and the entropy constraint
contribute to the loss by weighting factors αMV

= 0.005
and αH = 0.1 respectively. The weights are adjusted such
that the individual losses have comparable range. An early
stopping mechanism is triggered, if Gs predicts a different
label before reaching convergence. This ensures that the
graph and its explanation always have the same prediction.

3.3. Quantitative and qualitative analyses

We conduct absolute and comparative analyses between
CGEXPLAINER and random-explainer (RGEXPLAINER).
RGEXPLAINER generates a random explanation from an
original CG for a RoI by retaining equal number of nodes
and edges as retained by CGEXPLAINER. We quantitatively
and qualitatively evaluate the explainers under 2, 3 and 5-
class scenarios, and assess them using surrogate metrics
in absence of ground truth explanations. Table 1 presents
the weighted F1-scores for CGNNs, the average node and
edge reduction in CGEXPLAINER explanations, and cross-
entropy (CE) loss of CGNN for processing the original CG,
CGEXPLAINER-based CG and RGEXPLAINER-based CG.
The cross-entropy is computed between the predicted logits
and ground-truth labels of the RoIs.

The CGEXPLAINER removes a large percentage of nodes
and edges to generate compact explanations across 2, 3
and 5-class scenarios while preserving the RoI predictions.
The decrease in the percentage of node reduction with the
increase in the number of classes indicates that with the
increment of task complexity, the explainer exploits more
nodes to extract valuable information. A similar pattern
is observed for the edge reduction. Further, the reduction
percentage decreases with the increase in the malignancy
of the RoI. This indicates that the explainer discards abun-
dantly available less relevant benign epithelial, stromal and
lymphocytes, and retains relevant tumor and atypical nuclei.
Combining the CG explanations in Figure 3 and the nuclei
types annotation in Figure 4, we infer that the explanations
retain relevant tumor epithelial nuclei for DCIS diagnosis.
For 2-class scenario, the CG includes tumor nuclei in the
central region of the gland. Few tumor nuclei are sufficient
to differentiate (D) from (N+B). For 3-class scenario, the
CG includes more tumor nuclei in the central region and
the periphery of the gland and does not consider atypical
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Metric/Scenario
2-class scenario 3-class scenario 5-class scenario

N+B D+I All N+B A D+I All N B A D I All
Weighted F1-score (↑) 0.97 0.97 0.97 0.95 0.35 0.80 0.77 0.56 0.74 0.37 0.62 0.77 0.61

Node reduction (%) (↑) 97.7 91.6 94.6 89.5 92.4 85.6 88.5 92.3 93.8 75.8 63.3 59.00 76.9

Edge reduction (%) (↑) 99.2 93.8 96.4 94.3 98.7 90.5 93.5 97.1 97.0 90.6 74.1 62.8 84.2

Original CE (↓) 0.21 0.21 0.21 0.45 2.05 0.38 0.72 2.65 0.59 2.22 0.72 0.48 1.21

Explanation CE (↓) 0.10 0.21 0.16 0.44 1.41 0.55 0.67 1.65 0.73 1.61 2.57 0.67 1.41

Random CE (↓) 0.02 3.14 1.61 1.00 0.38 1.75 1.20 0.62 0.93 1.52 11.4 2.85 3.55

Table 1: Quantitative results for CGNN, CGEXPLAINER compactness, CGEXPLAINER and RGEXPLAINER performances.

(a) Original CG (b) 2-class explanation CG (c) 3-class explanation CG (d) 5-class explanation CG

Figure 3: Qualitative comparison of original CG and CGEXPLAINER CGs for 2, 3 and 5-class scenarios for a DCIS RoI.

Figure 4: Nuclei types annotation. Overlaid segmentation
masks of nuclei from 5-class explanation in green.

nuclei. This pattern differentiates (D) from (A). For 5-class
scenario, the CG includes more tumor nuclei distributed
within and around the gland, and some lymphocytes around
the gland. The CG also includes more cellular interactions
to identify a large cluster of tumor nuclei. Pathologically
this behavior differentiates (D) from (I) which has small
clusters of tumor nuclei scattered throughout the RoI. Addi-
tionally, the retained tumor nuclei and their interactions are
consistent with increasing task complexity.

Further, we compare the class-wise logits for original,
CGEXPLAINER and RGEXPLAINER CG via cross-entropy

(CE). Table 1 presents the class-wise CE and average CE
across all the classes. The CGEXPLAINER-based CG and
the original CG have comparable class-wise CE and aver-
age CE across all scenarios. We observe that in each sce-
nario, the RGEXPLAINER-based CG is biased towards one
class. For instance, in the 2-class scenario, RGEXPLAINER
frequently predicts the class (N+B) leading to a per-class
CE smaller than CGEXPLAINER. However, on average
across all the classes, the RGEXPLAINER CE is consis-
tently higher than the CGEXPLAINER. This conveys that
the RGEXPLAINER removes relevant entities from CGs,
thereby increasing the loss. These qualitative and quantita-
tive analyses conclude that the CGEXPLAINER generates
meaningful and consistent explanations.

4. Conclusion
We believe that our work, though preliminary, is a step in
the right direction towards better representations and inter-
pretability in DP. We have herein focused on the method-
ological introduction and cell-level analyses. In future work,
we plan to extend our approach to other biological enti-
ties and further to pathological assessment. Ultimately, our
goal is to understand any information additional to an ML
model prediction that one needs to provide to a user, to build
trust and to facilitate adoption and deployment of such ML
technologies in clinical scanarios.
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