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Abstract
In proteomic analysis pipelines, semi-supervised
support vector machine (SVM) learning (Kall
et al., 2007) is a critical step towards accurately
identifying the generating peptides of tandem
mass spectra. Called Percolator, this algorithm
iteratively learns the linear decision boundary
between correct and incorrect peptide-spectrum
matches (PSMs) and uses the converged decision
boundary to rerank the input PSMs. While this
reranking greatly improves PSM identification
accuracy, Percolator requires substantial analy-
sis time in practice. Recent work (Halloran &
Rocke, 2018b) has reduced such lengthy runtimes
by updating Percolator’s SVM solver to state-of-
the-art, multithreaded solvers. In this work, we
present linear SVM primal solvers novelly de-
signed to take advantage of graphical process-
ing units (GPUs) which significantly outperform
previous multithreaded speedups. Most impor-
tantly, we show how GPU optimizations may
be mixed with multithreading to enable such
speedups for commonly produced large-scale pro-
teomics datasets which do not fit in GPU memory
alone. On a massive proteomics dataset of nearly
a quarter-billion data instances, we show that such
mixed-architecture speedups reduce SVM analy-
sis time from over half a week down to less than
a single day while efficiently using limited GPU
memory.

1. Introduction
Introduced slightly over a decade ago, semi-supervised
SVM learning using the Percolator algorithm (Kall et al.,
2007) has become vital to accurately analyze proteomics
data collected via tandem mass spectrometry (MS/MS).
Given a collection of MS/MS spectra representing the pro-
teins present in a complex biological sample, the first stage
of proteomics analysis typically consists of identifying the
input spectra by searching a database of peptides. Database-
search thus results in a list of peptide-spectrum matches
(PSMs). In practice, however, database-search scoring func-

tions are often poorly calibrated, making PSMs from dif-
ferent spectra difficult to compare and diminishing overall
identification accuracy. To correct for this, PSM scores are
often post-processed using Percolator, which first estimates
PSM labels then learns the linear decision boundary between
labeled PSMs, repeating these two steps for a user-specified
number of iterations. Input PSM scores are subsequently
recalibrated using the final learned decision boundary.

The accuracy improvements of Percolator recalibration have
been well demonstrated for a wide variety of PSM scoring
functions (e.g., linear (Kall et al., 2007; Brosch et al., 2009;
Xu et al., 2013), p-value based (Granholm et al., 2013; How-
bert & Noble, 2014; Lin et al., 2018), and dynamic Bayesian
networks (Halloran et al., 2016)), complex PSM feature sets
(e.g., Fisher kernels (Halloran & Rocke, 2017; 2018a), sub-
scores of linear functions (Spivak & Noble, 2012), ensem-
bles of scoring functions (Wen et al., 2015), and features
derived using deep models (Gessulat et al., 2019)), and
relative to other popular post-processors (Tu et al., 2015).
Indeed, many complex, state-of-the-art proteomics work-
flows have adapted Percolator as a critical component of
their analysis pipelines. However, while Percolator offers
significant accuracy gains, they come at lengthy runtimes as
the size of commonly produced proteomic datasets has dra-
matically increased (by several orders of magnitude) since
Percolator’s debut. For instance, modest datasets comprised
of only several million PSMs require several hours of Per-
colator analysis (Halloran & Rocke, 2018b), while more
common proteomics datasets–whose PSMs regularly num-
ber in the tens-of-millions–may require up to a day (or more)
of analysis time (Matthew et al., 2016).

To speed up the lengthy analysis times required of large-
scale studies, recent work (Halloran & Rocke, 2018b) has
updated Percolator’s original SVM solver to the state-of-
the-art Trust Region Newton (TRON) algorithm (Lin et al.,
2008; Hsia et al., 2017) and utilized large numbers of com-
pute cores. Optimized for use within Percolator, this multi-
threaded version of TRON was shown to drastically reduce
large-scale analysis time. As the critical bottleneck com-
putations in TRON are linear algebra operations (Lee et al.,
2015), GPUs (which greatly outperform CPUs for large-
scale linear algebra calculations) are a ideal computational
tools to further speedup Percolator analysis time. How-
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ever, while TRON easily lends itself to multithreaded (CPU)
optimizations on shared memory systems, effective GPU op-
timizations are far more difficult to achieve; TRON heavily
relies on random access of feature instances throughout each
iteration of the algorithm. While this is naturally supported
in multicore environments, such random access prevents
memory coalescing (and is thus deleterious) for GPU com-
putation. Furthermore, large memory transfers between the
CPU and GPU are expensive, so that the complex, sequen-
tial dependency of variables in TRON further makes optimal
GPU use difficult.

Herein, we present two TRON solvers which overcome the
inherent multicore design of the algorithm and extensively
use GPUs to accelerate overall computation. We assume a
single GPU (referred to as the device) and refer to the multi-
core CPU as the host. The first presented GPU-optimized
solver decouples the original sequential dependence of vari-
ables, allowing the computation of large algorithm blocks to
saturate the device while using as few transactions between
device and host as possible. This solver (called TRON GPU)
drastically reduces overall SVM learning time, resulting in
a 7.4 fold speedup over Percolator’s current SVM learning
engine on a dataset of over 23 million PSMs, thus reducing
Percolator learning time from 14.4 hours to just 1.9 hours.

For even larger datasets, the device-memory requirements
of TRON GPU become restrictive as the memory band-
widths of state-of-the-art GPUs are far more limited than
those found in shared host memory systems. Thus, we
next present a mixed-architecture solver, called TRON
CPU+GPU, which combines the strengths of both architec-
tures; CPU multithreading for the essential random access
components of TRON and a GPU for fast computation in
contiguous memory. On a massive proteomics dataset of
over 215 million PSMs (too large to be analyzed using
TRON GPU), TRON CPU+GPU dominates all previously
proposed multithreaded speedups and achieves a 5.2 fold
speedup averaged across all computational threads, reduc-
ing Percolator learning time from 4.4 days down to just 19.7
hours.

2. Semi-supervised SVM Learning for
MS/MS Data using Percolator

In practical MS/MS experiments, ground truth labels (i.e.,
the true peptides responsible for generating each MS/MS
spectrum) are not known a priori; indeed, it is the role
of the database-search scoring algorithm to identify these
generating peptides. In order to assess the confidence of
peptide identifications, two peptide databases are typically
searched–a target database of real peptides and a decoy
database of permuted target sequences, which we know do
not occur in nature–and used to compute the false discovery
rate (FDR).

Percolator receives as input both decoy and target PSMs,
along with features derived for each PSM. This data is semi-
supervised, as we know that decoy PSMs are incorrect iden-
tifications (i.e., belong to the negative class), but we are not
certain which target PSMs are correct. Each iteration of
Percolator thus begins by calculating the target PSMs which
achieve a stringent FDR of 0.01% (i.e., are highly confident
identifications) and assigning these targets positive training
labels. In order to prevent overfitting and improve general-
izability, three-fold cross-validation is carried out over three
disjoint partitions of the original dataset, followed by further
nested cross-validation within each fold (Granholm et al.,
2012). This results in a total of nine unique train and test
sets. For each of these training sets, a linear SVM is trained
to discriminate between decoys and positive-labeled targets.
At the end of each iteration, the separately learned SVM
parameters are then merged and used to recalibrate all PSM
scores. This process is repeated for a user-specified number
of iterations (ten by default).

While this semi-supervised algorithm is robust in practice
and widely used throughout the proteomics community, it
is also computationally intensive as analysis time is domi-
nated by the iterative training of many SVMs. To combat
the extensive Percolator analysis times required of regularly
conducted large-scale protein studies, recent work (Hallo-
ran & Rocke, 2018b) updated Percolator’s original SVM
solver (called L2-SVM-MFN (Keerthi & DeCoste, 2005))
to the Trust Region Newton (TRON) algorithm (Lin et al.,
2008), the state-of-the-art solver used in the popular ma-
chine learning packages LIBLINEAR (Fan et al., 2008)
and scikit-learn (Pedregosa et al., 2011). TRON was opti-
mized within Percolator to utilize multithreading on shared-
memory systems and demonstrated to decrease total SVM
training time on datasets of several million PSMs. Most im-
portantly, TRON was shown to speedup Percolator without
affecting learned SVM parameters, unlike recently proposed
random-subsampling approaches (Matthew et al., 2016).

3. Trust Region Newton for Primal SVM
Learning

Consider feature vectors xi ∈ IRn, i = 1, . . . , l and label
vector y ∈ {−1, 1}l . Let X = [x1 . . .xl]

T , 1 denote the
indicator function, and ∗ denote element-by-element vector
multiplication. For vectors, index-set subscripts denote
subvectors and for matrices, pairs of index-set subscripts
denote submatrices.

The L2-regularized, L2-SVM primal objective function,
which we wish to minimize w.r.t. w, is

f(w) =
1

2
wTw + C

l∑
i=1

(max(0, 1− yiwTxi))
2, (1)
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the gradient of which is ∇f(w) = w + 2CXT
I,:(XI,:w −

yI), where I ≡ {i|1 − yiwTxi > 0} is an index set and
the operator : denotes all elements along the corresponding
dimension (i.e., all columns in this case). The generalized
Hessian of f(w) (Keerthi & DeCoste, 2005) is ∇2f(w) =
I + 2CXTDX, where I is the identity matrix and D is a
diagonal matrix with elements Dii = 1i∈I .

Algorithm 1 TRON for L2-SVMs

1: Given w, ∆, and σ0
2: while Not converged do
3: Find d in Equation 2 using a conjugate gradient

procedure
4: Calculate σ = f(w+d)−f(w)

q(d)

5: if σ > σ0 then w ← w+d, increase trust region
∆.

6: else Shrink ∆.
7: end if
8: end while

The TRON algorithm is detailed in Algorithm 1. At each
iteration, given the current parameters w and trust region
interval ∆, TRON considers the following quadratic ap-
proximation to f(w + d) − f(w), q(d) = ∇f(w)Td +
1
2d

T∇2f(w)d, to find a truncated Newton step confined in
the trust region by solving

min
d
q(d) s.t. ‖d‖2 ≤ ∆. (2)

If q(d) is close to f(w + d) − f(w), w is updated to
w + d and the trust region interval is increased for the sub-
sequent iteration. Otherwise, w remains unchanged and
the trust region interval is shrunk. The conjugate gradi-
ent method used to solve Equation 2 involves only a sin-
gle Hessian-vector product, the structure of which is ex-
ploited to avoid loading the entire Hessian into memory;
owing to the diagonal form of D, we have ∇2f(w) =
I + 2CXT

I,:DI,IXI,:. Thus, for a vector v, the Hessian-
vector product computed during conjugate gradient descent
is ∇2f(w)v = v + 2CXT

I,:(DI,I(XI,:v)) , and the algo-
rithm is very efficient overall.

3.1. TRON Implementations

Due to the special forms of the gradient and generalized
Hessian (in particular, the derivation and use of I through-
out the algorithm), computation in TRON heavily relies on
random access. This naturally allows efficient design of
the algorithm on a shared-memory, multicore system. As
detailed in (Lee et al., 2015) (and utilized within Percolator
in (Halloran & Rocke, 2018b)) the computation of f(w),
∇f(w), and∇2f(w)v may be efficiently computed across
multiple parallel threads using OpenMP. While efficient
for multicore architectures, the non-contiguous nature of
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Figure 1: Factor of speedup for SVM learning in Percolator for a
large-scale dataset containing 23,330,311 PSMs. Speedup factor
is calculated as the original Percolator SVM learning time divided
by the sped up learning time. The x-axis displays the number
of threads utilized by multithreaded methods “L2-SVM-MFN,”
“TRON CPU,” and “TRON CPU+GPU.”

the algorithm (i.e., I is recomputed every iteration) make
designing an efficient GPU implementation far less straight-
forward; for GPU computing, device-side computation per-
forms best over contiguous memory. Furthermore, large
memory transfers between host (i.e., CPU) and device (i.e.,
GPU) are expensive, hindering approaches where I is first
computed then a randomly accessed subset of the data is
formed on the host and transferred to the device.

We present two efficient GPU implementations of TRON
with complimentary strengths and weaknesses. Written
in CUDA, both implementations first load X and y onto
the device and, at the start of each iteration, transfer w
from host to device. Both solvers also make distinct use
of the insight that, on the device-side, prior to computing
f(w) in each iteration, I may be computed and stored in
device memory for future compute. The major operations
of each solver are listed in Table 1. The GPU-optimized
solver, TRON GPU, performs all intensive computing on
the GPU with very few transactions between host and de-
vice (only two small transfers from device to host), at the
cost of higher device-side memory to compute and store
XI,: every iteration. The mixed architecture solver, TRON
CPU+GPU, utilizes the GPU for heavy lifting before using
multithreading for efficient random access after I is com-
puted, utilizes less device-side memory but requires several
large data transfers between host and device.

4. Results and Discussion
All experiments were run on a dual Intel Xeon Gold 5118
compute node with 40 computational threads, an NVIDIA
Tesla V100 GPU, and 768 GB of memory. All methods are
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TRON GPU TRON CPU+GPU
z = y ∗ (Xw) is calculated on the device, where ∗ is vector
element-wise product.

z = y ∗ (Xw) is calculated on the device, then transferred to
the host.

I = {i : zi < 1} is calculated on the device, then f(w) =
1
2w

Tw + C
∑l

i=1(1 − zi > 0)2 is computed on the device
while the host runs independent, sequential operations.

I is calculated on the device and transferred to the host. The
transfer is interleaved with the device-side computation of
f(w).

On the device, ẑ = yI ∗ (zI −1) and X̂ = XI,: are computed
and stored in device memory. The gradient g(w) = ∇f(w)
is then computed as g(w) = w + 2CX̂T ẑ and transferred to
the host.

With I and z on the host, g(w) = ∇f(w) is computed using
multithreading.

The Hessian-product is computed on the device as
∇2f(w)v = v + 2CX̂T (X̂v) and transferred to the host.

Using multithreading, the Hessian-product is calculated on
the host as ∇2f(w)v = v + 2CXT

I,:(DI,I(XI,:v)) = v +

2C
∑

i∈I(xT
i v)xi.

Table 1: Major operations of the TRON solvers designed for GPU compute.

tested using two extremely large datasets, the first of which
(referred to as the Kim dataset) is a larger version of the
Kim dataset used in (Halloran & Rocke, 2018b) consisting
of 23,330,311 PSMs. The second dataset, referred to as the
Wilhelm dataset, was collected from a map of the human
proteome (Wilhelm et al., 2014) and contains 215,282,771
PSMs. The GPU optimized TRON solvers are compared
against the multithread-optimized versions of TRON (re-
ferred to as TRON CPU) and L2-SVM-MFN from (Halloran
& Rocke, 2018b). All multithreaded solvers were tested us-
ing 8, 16, 24, 32, and 40 threads. As in (Halloran & Rocke,
2018b), to effectively measure the runtime of multithreaded
methods without any excess thread-scheduling overhead,
parallelization of Percolator’s outermost cross-validation
was disabled.

Reported runtimes are the minimum wall-clock times mea-
sured over five runs for the Kim dataset and three runs for
the Wilhelm dataset. The original Percolator SVM learn-
ing runtimes (collected using Percolator v3.02.0) were
14.4 hours and 4.4. days for the Kim and Wilhelm datasets,
respectively. For the Kim dataset, speedup results for all dis-
cussed methods are illustrated in Figure 1. For the Wilhelm
dataset, the Tesla V100 memory bandwidth (16 GB total) is
exceeded for TRON GPU. However, the reduced memory
requirements of TRON CPU+GPU allow GPU speedups
to substantially decrease Percolator analysis time for this
massive dataset (illustrated in Figure 2).

Both GPU solvers greatly accelerate Percolator SVM learn-
ing time while dominating previously proposed multi-
threaded speedups. For the Kim dataset, TRON CPU+GPU
and TRON GPU complete 6.6 (for 40 threads) and 7.4 times
faster than Percolator’s current SVM learning engine, while
TRON CPU+GPU completes 5.3 (for 40 threads) times
faster for the Wilhelm dataset. Together, these two solvers
present versatile trade-offs for different compute environ-
ments; when the dataset does not exceed the GPU memory,

TRON GPU offers superior performance. However, when
onboard GPU memory is limited, a small portion of speed
may be traded for much less memory consumption by using
TRON CPU+GPU. Furthermore, when the number of com-
putational threads is also limited, TRON CPU+GPU offers
significantly better (and more stable) performance at low
numbers of utilized threads compared to the purely multi-
threaded solvers TRON CPU and L2-SVM-MFN. In future
work, the runtime benefits of the presented GPU-optimized
solvers will be further evaluated over other large/massive-
scale datasets and the memory footprints (on both host and
device) will be carefully analyzed.
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Figure 2: Factor of speedup for SVM learning in Percolator for
a massive dataset containing 215,282,771 PSMs, too large to be
analyzed using “TRON GPU.” Speedup factor is calculated as the
original Percolator SVM learning time divided by the sped up
learning time. The x-axis displays the number of threads utilized
by multithreaded methods “L2-SVM-MFN,” “TRON CPU,” and
“TRON CPU+GPU.”
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