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Abstract
Recent progress in single-cell genomics has pro-
duced large single-cell data-sets of cell-types and
organs from mouse and human samples. Since
it is still difficult to transfer data across species
we conceptualize this problem as language trans-
lation task between mouse and human, requiring
a latent space in which we can translate accord-
ingly. To this end, we developed a deep learn-
ing module using a transformer architecture and
using the Mouse and Human Brain Atlas to em-
bed the data as a piece of a manifold amenable
for cross-species translation. Neither PCA and
SAUCIE could align the data across species in
this manner, and with our representation we also
demonstrate better clustering accuracy (86.7%)
compared with PCA and SAUCIE. Computing
Wasserstein distances between all cell-types and
tissue types demonstrated overall a shorter dis-
tance in the latent space between similar cell
types across human and mouse. This suggests that
the intrinsic geometry of the organization of the
nervous system between species share sufficient
structure to enable translation across species.

1. Introduction
Rapid progress in the development of single-cell RNA se-
quencing (scRNA-seq) technologies in recent years has
provided many valuable insights into complex biological
systems (Stuart & Satija, 2019; Shalek et al., 2014). For
example, scRNA-seq profiling of the adult mouse nervous
system has provided a deep mapping of cell-types in differ-
ent organs and during development, and these studies are
in effect producing a reference atlas for studying the mam-
malian nervous system (Zeisel et al., 2018). The processing
of such data presents new challenges, and machine learn-
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ing algorithms have proved to be useful to address topics
such as low-level bioinformatics analysis, clustering (Butler
et al., 2018), visualization (Moon et al., 2019), missing data-
points, i.e. imputation (Wang et al., 2019), data integration
(Hie et al., 2019) and prediction of perturbation responses
(Lotfollahi et al., 2019). A common theme across these
methods is the representation of the single-cell gene expres-
sion count matrix as a low-dimensional object for either
efficient data pre-processing or downstream analysis includ-
ing data fusion within or between different data-modalities.

Interestingly, these large amounts of data are currently be-
ing generated in a number of different species, including
the mouse model, which is an important model organism
for development, diseases, and drug development. It would
therefore be advantageous to be able to transfer information,
data, and insights between different model systems. Yet,
this is still an open challenge since current tools as a rule
targets a single data-modality or organ system within the
confinement of a given species. Such cross-species com-
parisons are complicated by many biological and technical
factors (Shafer, 2019). Some early work in this direction at-
tempting to align the cross-species data sets includes (Ding
et al., 2019; Stuart et al., 2019). Nevertheless, they are either
based on a biological process rather than data or project the
data points(cells) to several clusters that contains the same
cell type in each cluster. Here we address this problem by
asking to what extent we can learn a mapping or a trans-
lation between the human and mouse neural systems. We
rephrase the cross-species alignment as a language problem
in that we would like to translate the language within one
system (mouse brain) into the other language (human brain).
Using the language analogy we search for a latent space
representation of the problem that enables such a translation
thus avoiding the high-dimensionality of the original single-
cell gene expression matrix. In natural language processing,
the essence of neural machine translation (Bahdanau et al.,
2015) is an embedding-transformation process, which can
be classified as generalized data fusion. Here we explore
and adapt a successful Transformer language neural network
architecture to the problem of cross-species alignment, tar-
geting a translation between the human and mouse nervous
system.
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Figure 1. Overview of the model architecture

2. Model
2.1. Neural Network Architecture

Our model contains three main parts: linear transformation,
transformer encoder and transformer decoder. It should be
noted that in natural language processing, the input data is in
order, which mainly includes three parts of embedding, that
is, word vector embedding, position embedding, and lan-
guage type embedding. Because the data of the single-cell
expression matrix is order-independent, our model discards
the position code and only contains the gene code, that is,
the source code, and can use the information capture capabil-
ities of the encoder and decoder in the language translation
model.

As shown in Figure 1, suppose we have dataset XA ∈ Ra×n

and dataset XB ∈ Rb×m, where a the amount of cells in the
dataset XA, n is the amount of genes in the dataset XA, b the
amount of cells in the dataset XB , m is the amount of genes
in the dataset XB , the values of the matrix represent gene
expression values for each cells. Notice that the expression
matrix is sparse(typically over 80% of the values are zero).

Through the linear layer Wa and Wb, we can obtain the loss-
less intense representation of the expression matrix(since
we can reconstruct the raw expression matrix by simple
inverse transformation). e.g, the lossless intense represen-
tation of XA and XB are X∗A = WaXA ∈ Ra×n and
X∗B = WbXB ∈ Rb×m. (Devlin et al., 2018) shows that
randomly mask some of the input and impute back is an
efficient way to train a large model in an unsupervised ap-
proach. Then we randomly mask 10% of the data, which is
a method to make the model more robust.

After linear layer, let CA = SAWA ∈ R1×n and CB =
SBWB ∈ R1×m be the trainable source embedding that
denote the source of the data, where SA ∈ R1×k and SB ∈
R1×k are one-hot vectors that denote the dataset, and k is
the amount of data sets. Then we extend the CA and CB to
the matrix whose shapes are (a, n) and (b,m) The input of
the Transformer Encoder can be calculate as IA = X∗A+CA

and IB = X∗B + CB

As a result we obtain the embeddings EA and EB from
Transformer Encoder

EA = MultiHead(IA, IA, IA) (1)

EB = MultiHead(IB , IB , IB) (2)

Inspired by the BERT (Devlin et al., 2018), we utilize Atten-
tion mechanism to merge the information after Transformer
Encoder

I ′A = Attention(IA, EA, EA) (3)

I ′B = Attention(IB , EB , EB) (4)

And the output of Transformer Decoder can be calculated as

X ′A = MultiHead(I ′A, I
′
A, I

′
A) (5)

X ′B = MultiHead(I ′B , I
′
B , I

′
B) (6)

Finally, we use Mean Square Error LA = ‖XA − X ′A‖2
and LB = ‖XB −X ′B‖2 as loss function for reconstruction.
Since the intense representation is lossless transformation
of the raw data, it is equivalent to reconstruct data in the raw
space.

2.2. Alignment in the latent manifold space as derived
from scRNA-seq data

Here we make the explicit assumption that the cells in differ-
ent biological systems can have similar functions and such
functions are encoded in expression of different genes. Us-
ing the analogy from language translation problem, we ben-
efit from that the embedding of English and German have a
similar structure. Since we live in the same world, different
languages can be seen as the different representations of
the same things. The difference is that in scRNA-seq, the
function of cells might be much different, and some datasets
might contain the cells that are not included in another data
set. Yet, based on the corresponding assumption, that the
”same” system in two different species is performing sim-
ilar tasks based on a similar architecture, the shape of the
manifold of the different datasets in the embedded space is
similar.
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Our model therefore have the objective of learning an align-
ment between two sets such that the manifold shape is sim-
ilar in the shared embedding space. In this paper, we use
the adversarial criterion to measure the similarity, which
is denoted as ‖ · ‖D. We denote the source dataset as X
and the target matrix as Y , what we want to do is to find a
transformation W ∗ such that

W ∗ = argmin
W∈Md(R)

‖WX − Y ‖D (7)

where d is the dimensionality of the embeddings, Md(R) is
the space of d × d matrices of real numbers, X is matrix
of size d× n sampled from X , Y is matrix of size d× n
sampled from Y

Figure 2. Overview of mapping. (a) Dataset X and dataset Y in
the embedding space. (b) After mapping, assume that dataset X
contains more cell types, dataset X would separate into two parts,
one of them is similar to dataset Y. And the other part contains the
cells that very different from all the cells in dataset Y.

The rationale for employing a linear transformation to align
the data and to use GANs for training, originates from re-
cent results on word translation. Here a (Mikolov et al.,
2013) achieved better results on the word translation task
compared to more advanced strategies like multi-layer neu-
ral networks. Finally, (Lample et al., 2018) construct lin-
ear language mapping through adversarial training, which
demonstrates the effectiveness of learning linear mapping
by GANs.

2.3. Data-sets, preprocessing, and parameters

Data-sets. We performed computational experiments
on Human Brain Atlas and Mouse Brain Atlas,
where we demonstrate the visualization of the re-
sult and compare the predictive performance of our
proposed method against SAUCIE (Amodio et al.,
2019) and PCA (Lever et al., 2017). Human Brain
Atlas (HBA) (https://portal.brain-map.org/
atlases-and-data/rnaseq#Human_Cortex) in-
clude 50,000 genes of 25,000 cells for more than 10
cell types. And Mouse Brain Atlas (MBA) (http://
mousebrain.org/) includes 25,000 genes of 160,000
cells for more than 16 cell types, which provides a clearer

picture of cell diversity by region and a reference atlas for
studying the mammalian nervous system.

Preprocessing. Cells and genes were filtered using
the python package scprep (https://github.com/
KrishnaswamyLab/scprep). Secondly, we log-
transformed gene expression profiles. For each data set,
we then scaled it to [−50, 50]. Finally, for each data set, we
project it to 1200 dimensions as intense representation using
linear Principle Component Analysis algorithm.

Parameters. In (i) the embedding stage, the batch size is
1024, the learning rate is 0.0003, the embedding size for
Transformers is 1024, the total amount of parameters in
the embedding model is 300 million. (ii) In the alignment
stage, we choose one layer linear networks without activa-
tion function as the generator and Multi-Layer Perceptron
as the discriminator, the learning rate is 0.00003, the batch
size is 1024. In the embedding task, we compared several
machine learning algorithms, namely, multitask SAUCIE
(Amodio et al., 2019), PCA and our Transformers based
model on two data sets. We randomly selected 1000 cells in
ever cell type for visualization.

3. Results
Here we first show that the embedding of our model
aligns the data for human and mouse at the level of cell-
type/tissues, sufficient to reconstruct each data-sets, and
detecting parts of the data which does not match across
species.

Figure 3. The embedding from our models, the top four labels in
the right subfigure belong to Human Brain Atlas, others are from
Mouse Brain Atlas

Figure 3 illustrates that the embeddings using our model
preserved biological knowledge better than the other two
models. For example, for each cell type, the distribution of
cells in the embedding space is continuous and separated.
Here the 1024-dimension embeddings are visualized in two-
dimension space. Note that since the two datasets (HBA
and MBA) are operated through the same Transformer en-
coder and decoder, the embeddings of them are similar with
respect to the shape of the manifolds. Moreover, since a

https://portal.brain-map.org/atlases-and-data/rnaseq#Human_Cortex
https://portal.brain-map.org/atlases-and-data/rnaseq#Human_Cortex
http://mousebrain.org/
http://mousebrain.org/
https://github.com/KrishnaswamyLab/scprep
https://github.com/KrishnaswamyLab/scprep
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Table 1. Average Wasserstein distance from Human to Mouse for
Figure 5

CNS PNS NON-NEURAL

CNS 7.91± 0.012 8.85± 0.011 8.3± 0.003

source embedding is added to both data set prior being pro-
cessed by the Transformer Encoder, the HBA data set and
MBA data set can readily be separated.

Figure 4. The left subfigure is 2-D embedding from PCA, and the
right figure is The 2-D embedding from SAUCIE

Such an embedding using the transformer, contrasts with
both a PCA or SAUCIE embedding. Performing a dimen-
sionality reduction using PCA, into the 2-dimensional space
(Figure 4), we find that the PCA embedding model cannot
distinguish between different species or cell types. Using
the SAUCIE model, with its default parameters, to first em-
bed high-dimensional single-cell data with PCA into 1024
dimensions, and use the multi-layer perceptron model to
embed in the 2-dimensional space. As evident when visual-
izing the embedding (Figure 4) and compared with Figure
3, the SAUCIE representation does not capture the intrinsic
geometry of the data-sets.

Figure 5. Data integration results. the top four labels in the right
subfigure belong to Human Brain Atlas, others are from Mouse
Brain Atlas

Next, we asked to what extent would the species alignment
(Figure 5) using a transformer be informative from a bio-

Table 2. Hierarchical cluster accuracy

MODELS TAXONOMY-1 TAXONOMY-2

SAUCIE 66.7% 53.3%
PCA 80.0% 60.0%
OURS 86.7% 66.7%

logical standpoint. As illustrated in the Method section, it
is to be expected that different parts of the data would be
separated from the main manifold after an alignment. Inter-
estingly, this was confirmed using the data. The left part of
data points is from MBA data set, which contains the cells
from CNS, PNS and ENS while the right part of the data only
from CNS. And the right part of the MBA data set, which
is from CNS, is similar to the HBA data set. To quantify
such a similarity we computed the wasserstein distances
between all cell-types and tissue types. A proper alignment
would position the human CNS closer to the mouse CNS
as compared with other mouse tissues. This was indeed
confirmed (Table 1).

Next we asked whether our embeddings, evidently useful
for cross-species mapping, would be beneficial for cluster-
ing. To this end we performed hierarchical cluster algorithm
(Rokach & Maimon, 2005) on the embeddings of Mouse
Brain Atlas and compared the hierarchical cluster results
with the ground truth. Our model performs well in this un-
supervised classification problem, the accuracy rate at the
first taxonomy reaches 86.7%. The only two wrong clas-
sification results are Sypathetic and Enteric. However, the
size of these two categories is relatively small, so this error
may be caused by the imbalance of the data set. However,
for a relatively large set of cell types that have undergone
extensive training, the accuracy is higher.

In conclusion, the results suggest that the intrinsic geometry
of the organization of the nervous system between species
share sufficient structure to enable translation across species.

We compare the result with SAUCIE and PCA in Table
2. In SAUCIE, they directly compress the data from high-
dimension space to 2-dimension space. It is probable that
the embedding is highly compressive, so its hierarchical
information can not be discovered by hierarchical cluster
directly. In conclusion, our models show that Transformers
architecture preserves the biological information well when
it was used to embed the scRNA-seq expression matrix from
high dimensional space to relatively low-dimension space.
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