## Deriving Disease Modules from the Compressed Transcriptional Space Embedded in a Deep Autoencoder

Sanjiv K. Dwivedi<sup>1</sup> Andreas Tjärnberg<sup>123</sup> Jesper Tegnér<sup>456</sup> Mika Gustafsson<sup>1</sup>

## Abstract

Disease modules in molecular interaction maps have been useful for characterizing diseases. Yet biological networks, that commonly define such modules are incomplete and biased toward some well-studied disease genes. Here we ask whether disease-relevant modules of genes can be discovered without prior knowledge of a biological network, instead training a deep autoencoder from large transcriptional data. We hypothesize that modules could be discovered within the autoencoder representations. We find a statistically significant enrichment of genome-wide association studies (GWAS) relevant genes in the last layer, and to a successively lesser degree in the middle and first layers respectively. In contrast, we find an opposite gradient where a modular proteinprotein interaction signal is strongest in the first layer, but then vanishing smoothly deeper in the network. We conclude that a data-driven discovery approach is sufficient to discover groups of disease-related genes. Code: gitlab.com/Gustafsson-lab. Full Paper: www.nature.com/articles/s41467-020-14666-6

## 1. Paper Summary

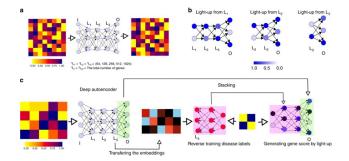



Figure 1. Schematic diagram of interpreting an autoencoder and defining the disease modules. a Training an autoencoder. b The steps of light-up method used for interpreting the hidden layer nodes in terms of PPI and pathways. c Depicts the steps of predicting the disease gene using transcriptomics signals and autoencoder.

## References

Dwivedi, S. K., Tjärnberg, A., Tegnér, J., and Gustafsson, M. Deriving disease modules from the compressed transcriptional space embedded in a deep autoencoder. *Nature Communications*, 11(856):1–10, 2020. https://doi.org/10.1038/s41467-020-14666-6.

<sup>&</sup>lt;sup>1</sup>Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden <sup>2</sup>Department of Biology, Center For Genomics and Systems Biology, New York University, New York, NY 10008, USA <sup>3</sup>Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA <sup>4</sup>Biological and Environmental Sciences and Engineering Division, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955–6900, Saudi Arabia <sup>5</sup>Unit of Computational Medicine, Department of Medicine, Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden <sup>6</sup>Science for Life Laboratory, Solna, Sweden. Correspondence to: Mika Gustafsson <mixa.gustafsson@liu.se>.

Presented at the ICML 2020 Workshop on Computational Biology (WCB). Copyright 2020 by the author(s).