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1. Introduction
High-throughput profiling of the transcriptome has revolu-
tionised discovery methods in biological sciences. The
resulting gene expression measurements can be used to un-
cover disease mechanisms (Emilsson et al., 2008; Gamazon
et al., 2018), propose novel drug targets (Sirota et al., 2011;
Evans & Relling, 2004), provide a basis for comparative
genomics (King & Wilson, 1975; Colbran et al., 2019), and
motivate a wide range of important biological problems.

One question of fundamental biological significance is to
what extent the expression of a subset of genes can recover
the full transcriptome. Genes involved in similar biolo-
gical processes are likely to have similar expression pro-
files (Zhang & Horvath, 2005), raising the possibility of
gene expression prediction from a minimal subset of genes.
Moreover, gene expression measurements may suffer from
unreliable or missing values because some genome regions
are challenging to interrogate due to high genomic complex-
ity or sequence homology (Conesa et al., 2016), highlighting
the need for accurate imputation. Most gene expression stud-
ies continue to be performed with specimens derived from
peripheral blood due to the difficulty of collecting other
tissues, but gene expression may be highly tissue-specific,
potentially limiting the utility of a proxy tissue.

To address these challenges, we develop an approach to
gene expression imputation using Generative Adversarial
Imputation Nets (GAIN) (Yoon et al., 2018). We present
an architecture that recovers missing expression data for
multiple tissue types under the missing completely at ran-
dom assumption (Little & Rubin, 2019). To enlarge the
possibility and scale of a study’s expression data (e.g. by in-
cluding samples from highly inaccessible tissues), we train
our model on data from the Genotype-Tissue Expression
(GTEx) project (Consortium et al., 2017), a reference re-
source (V8) that has generated a comprehensive collection
of transcriptomes in a diverse set of tissues.
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x

m z

x̃
z̃

q

r

eG

b

h

x̂

eD

ŷ
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Figure 1. Architecture of the model. The generator takes gene
expression values x̃ with missing values as well as categorical (e.g.
tissue type; q) and numerical (e.g. age; r) covariates, and outputs
the imputed sample x̂. The discriminator receives x̂ and sample
covariates, and produces the probabilities ŷ of each gene being
observed as opposed to being imputed by the generator.

We show that our approach is superior to several standard
and state-of-the-art imputation methods in terms of predict-
ive performance and running time. Furthermore, we demon-
strate that it is highly applicable across many different tis-
sues and varying levels of missingness. To analyse the cross-
study relevance, we evaluate our method on gene expression
data from The Cancer Genome Atlas (TCGA) (Weinstein
et al., 2013a). We show that our model generalises to RNA-
Seq data from 3 cancer types, for which certain tradition-
ally underrepresented populations, specifically in complex
disease genomic studies (Wojcik et al., 2019), bear a dis-
proportionate burden of poor health outcomes (Huo et al.,
2017), with potentially important implications for amelior-
ating health disparities.
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2. Methods
Let D = {(x̃,m, r,q)} be a dataset where x̃ ∈ IRn rep-
resents a vector of gene expression values with missing
components; m ∈ {0, 1}n is a mask indicating which com-
ponents of the original vector of expression values x are
missing or observed; n is the number of genes; and q ∈ Nc

and r ∈ IRk are vectors of c categorical (e.g. tissue type or
sex) and k quantitative covariates (e.g. age), respectively.
Our goal is to recover the original gene expression vector
x ∈ IRn by modeling the conditional probability distribution
P (X = x|X̃ = x̃,M = m,R = r,Q = q). By modeling
the distribution, we can also quantify the uncertainty of the
imputed expression values.

Our model is based on a Generative Adversarial Imputation
Network (GAIN, Yoon et al., 2018). The architecture of
both players is shown in Figure 1.

Generator. The generator aims at recovering missing
data from partial gene expression observations, producing
samples from the conditional P (X|X̃,M,Q,R). Formally,
we define the generator as a function G : IRn × IRn ×
{0, 1}n × IRk × Nc → IRn that imputes expression values
as follows:

x̄ = G(x�m, z� (1−m),m, r,q) (1)

where z ∈ IRn is a vector sampled from a fixed noise distri-
bution. Here � denotes element-wise multiplication. Sim-
ilar to GAIN, we mask the n-dimensional noise vector as
z�(1−m) to encourage a bijective mapping between noise
components and genes. Before passing the output x̄ to the
discriminator, we replace the prediction for the non-missing
components by the original, observed expression values:

x̂ = m� x̃ + (1−m)� x̄ (2)

Discriminator. The discriminator takes the imputed
samples x̂ and attempts to distinguish whether the expres-
sion value of each gene has been observed or produced
by the generator. This is in contrast to the original GAN
discriminator, which receives information from two input
streams (generator and data distribution) and attempts to
distinguish the true input source.

Formally, the discriminator is a function D : IRn × IRn ×
IRk × Nc → IRn that outputs the probability ŷ ∈ IRn of
each gene being observed as opposed to being imputed by
the generator:

ŷ = D(x̂,h,q, r) (3)

Here, the vector h ∈ IRn corresponds to the hint mechanism
described in (Yoon et al., 2018), which provides theoretical
guarantees on the uniqueness of the global minimum for
the estimation of P (X|X̃,M,R,Q). Concretely, the role
of the hint vector h is to leak some information about the

Table 1. Imputation performance with a missing rate of 50% across
10 runs. The running time of MICE and MissForest is > 7 days.
When R2 < 0, the mean of the data provides a better fit.

Method R2 Feasible?

MICE − ×
MissForest − ×
Blood surrogate −0.924± 0.136

√

Median imputation −0.024± 0.012
√

GAIN-MSE-GTEx 0.649± 0.021
√

GAIN-GTEx 0.659± 0.022
√

mask m to the discriminator. Similar to GAIN, we define
the hint h as follows:

h = b�m+
1

2
(1−b) b ∼ B(1, p) p ∼ U(α, β)

(4)
where b ∈ {0, 1}n is a binary vector that controls the
amount of information from the mask m revealed to the
discriminator. In contrast to GAIN, which discloses all
but one components of the mask, we sample b from a
Bernoulli distribution parametrised by a random probab-
ility p ∼ U(α, β), where α ∈ [0, 1] and β ∈ [α, 1] are
hyperparameters. This accounts for a high number of genes
n and allows to trade off the number of mask components
that are revealed to the discriminator.

Optimisation. Similarly to GAN and GAIN, we optimise
the generator and discriminator adversarially, interleaving
gradient updates for the discriminator and generator.

For the discriminator, we penalise the errors for genes whose
corresponding mask has not been revealed through the hint
mechanism. We achieve this via the following loss function
LD : {0, 1}n × IRn × {0, 1}n → IR:

LD(m, ŷ,b) =
−1

Z
(1− b)>

(
m� log ŷ

+ (1−m)� (1− log ŷ)
)

(5)

where Z = 1 + (1− b)>(1− b) is a normalisation term.

For the generator, we penalise both reconstruction and im-
putation errors. Similar to GAIN, we use the following loss
function LG : {0, 1}n × IRn × IRn × IRn × {0, 1}n → IR
for the generator:

LG(m,x, x̄, ŷ,b) =
−1

Z1

(
(1− b)� (1−m)

)>
log ŷ

+
λ

Z2
m>(x− x̄)2 (6)

where Z1 = 1 + (1 − b)>(1 − b) and Z2 = m>m are
normalisation terms, and λ > 0 is a hyperparameter.
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Figure 2. R2 imputation scores per GTEx tissue with a missing
rate of 50%. Each box shows the distribution of the per-gene R2

scores in the test set. The color of each box represents the number
of training samples per tissue.

3. Results
Comparison. We compare our approach, which we name
GAIN-GTEx, to 2 standard approaches (blood surrogate1

and median imputation), 2 state-of-the-art methods (MICE,
Buuren & Groothuis-Oudshoorn, 2010; and MissForest,
Stekhoven & Bühlmann, 2012), and a simplified version of
our method trained exclusively on the mean squared error
(GAIN-MSE-GTEx).

Table 1 shows a quantitative summary of the imputation per-
formances across 12,557 unique human genes. In addition
to the imputation scores, we include a feasible column that
shows whether the gene expression imputation is computa-
tionally feasible under our experimental design. We label
methods as unfeasible when they take longer than 7 days to
run on our server2, after which we halt the execution.

1We impute missing gene expression values in any given tissue
with the corresponding expression values measured in whole blood.

2CPU: Intel(R) Xeon(R) Processor E5-2630 v4. RAM: 125GB

Table 2. Cross-study results for our model trained on GTEx. For
a missing rate of 50%, we report the R2 scores on data from 3
TCGA cancers and their healthy counterpart on GTEx (test set).

Tissue R2

TCGA LAML 0.386± 0.057
TCGA BRCA 0.408± 0.023
TCGA LUAD 0.439± 0.034
GTEx Whole blood 0.678± 0.031
GTEx Breast 0.724± 0.036
GTEx Lung 0.713± 0.033

Tissue-specific results. Figure 2 shows the R2 scores
achieved by GAIN-GTEx across 49 tissues. To obtain these
results, we generate random masks with a missing rate of
50% for the extended test set where each tissue is equally
represented, we perform imputation, and we plot the distri-
bution of 12,557 gene R2 scores for each tissue.

Cross-study results across missing rates. To evaluate
the cross-study relevance of our method, we leverage the
model trained on GTEx to perform imputation on The Can-
cer Genome Atlas (TCGA) gene expression data in acute
myeloid leukemia (TCGA LAML; Network, 2013), breast
cancer (TCGA BRCA; Network et al., 2012), and lung ad-
enocarcinoma (TCGA LUAD; Network et al., 2014). For
each TCGA tissue and its non-diseased test counterpart on
GTEx, we show the imputation quality in Table 2 as well as
the performance across varying missing rates in Figure 3.

4. Discussion
We develop an imputation approach to gene expression,
facilitating the reconstruction of a high-dimensional mo-
lecular trait that is central to disease biology and drug target
discovery. Our model builds on GAIN to learn complex
probability distributions from incomplete gene expression
data and relevant covariates.

To enlarge the possibility and scale of a study’s expression
data, we leverage the most comprehensive human transcrip-
tome resource available (GTEx V8), allowing us to test the
performance of our method in a broad collection of tissues
(see Figure 2). The biospecimen repository includes model
systems such as whole blood and Epstein Barr virus (EBV)
transformed lymphocytes; central nervous system tissues
from 13 brain regions; and a wide diversity of other primary
tissues from non-diseased individuals. In particular, we
observe that EBV transformed lymphocytes, an accessible
and renewable resource for functional genomics, are a not-
able outlier in imputation performance. This is perhaps not
surprising, consistent with studies about the transcriptional
effect of EBV infection on the suitability of the cell lines as
a model system for primary tissues (Carter et al., 2002).
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Figure 3. R2 imputation scores per tissue across missing rate for 3 TCGA cancers and their healthy counterpart in GTEx (test set). The
shaded area represents one standard deviation of the per-gene R2 scores in the corresponding tissue. We note that the performance is
stable and that the greater the proportion of missing values, the lower the prediction performance.

We compare our approach with several existing imputation
methods and find that GAIN-GTEx outperforms them in
terms of imputation performance and runtime (see Table
1). We observe that standard approaches such as leveraging
the expression of missing genes from a surrogate blood
tissue yield negative R2 values and therefore do not per-
form well. Median imputation, although easy to implement,
has a very limited predictive power. In terms of state-of-
the-art-methods, we note that MICE and MissForest are
computationally prohibitive given the high-dimensionality
of the data and we halt the execution after running our exper-
iments for 7 days. Finally, we observe that a simplification
of our method, GAIN-MSE-GTEx, also performs well, sug-
gesting that the mean squared error term of the generator’s
loss function has a major role in the learning process.

To evaluate the cross-study relevance of our method, we
apply the trained model derived from GTEx to perform im-
putation on The Cancer Genome Atlas gene expression data
in acute myeloid leukemia, lung adenocarcinoma, and breast
cancer. In addition to technical artifacts (e.g. batch effects),
generalising to this data is highly challenging because the
expression is largely driven by features of the disease such
as chromosomal abnormalities, genomic instabilities, large-
scale mutations, and epigenetic changes (Weinstein et al.,
2013b). Our results show that, despite these challenges, our
method is robust to gene expression from multiple diseases
in different tissues (see Table 2), lending itself to being
used as a tool to extend independent transcriptomic stud-
ies. Finally, we evaluate the imputation performance of
GAIN-GTEx for a range of values for the missing rate (see
Figure 3). We note that the performance is stable and that
the greater the proportion of missing values, the lower the
prediction performance.

5. Conclusion
In this work, we develop a method for gene expression im-
putation that achieves state-of-the-art performance in terms
of imputation quality and running time. Our analysis shows
that the use of blood as a surrogate for inaccessible tissues,
as widely practiced throughout biomedical research, has
substantially degraded performance, with important implic-
ations for biomarker discovery and therapeutic development.

Our model can facilitate the straightforward integration and
cost-effective repurposing of large-scale RNA bioreposit-
ories and resources into genomic studies of disease, with
high applicability across diverse tissue types. Moreover, our
approach generalises to gene expression in a disease class
which has shown considerable health outcome disparities
across population groups in terms of morbidity and mor-
tality, with potential global health application to detection,
diagnosis, and treatment (Hosny & Aerts, 2019). Finally,
this study has the potential to catalyse research into the ap-
plication of Generative Adversarial Networks (Goodfellow
et al., 2014) for molecular reconstruction of cellular states
and downstream gene mapping of complex traits (Gamazon
et al., 2015).
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