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Abstract

We model the partial order of accumulation of
mutations during tumorigenesis by linear struc-
tural equations. In this framework, the cancer
progression network is modeled as a weighted
directed acyclic graph (DAG), which minimizes
a suitable continuous loss function. The goal
is to learn the DAG from cross-sectional mu-
tation allele frequency data. As a case study,
we infer the order of mutations in melanoma.
The recovered network of melanoma matches the
known biological facts about the subtypes and
progression of melanoma while discovers mutual
exclusivity patterns among mutations by nega-
tive edges. Code implementing the proposed ap-
proach is open-source and publicly available at
https://github.com/alirezaomidi/cancerdag.

1. Introduction
Cancer is a genetic disease where the accumulation of so-
matic alterations with selective advantage evolves the nor-
mal cells to a tumor. Learning this evolutionary process is
critical for effective cancer treatment. Understanding the or-
der of alterations leading to tumorigenesis is among the early
objectives of cancer researchers (Vogelstein et al., 1988).
The order in which alterations accumulate in the tumor cell
population has shown to have clinical value (Beerenwinkel
et al., 2015), helps in the refined staging of cancer (Vogel-
stein et al., 1988), and predicts the potential course of the
disease (Hosseini et al., 2019).
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The main challenge in inferring the order of alterations is the
fact that most large scale cancer data sets have low resolution
and are cross-sectional (i.e., one sample at the time of diag-
nosis). Although the development of single-cell sequencing
technologies is accelerating, the amount of single-cell data
available from various cancers compared to bulk sequenc-
ing results from consortiums like TCGA (Cancer Genome
Atlas Research Network et al., 2013) is minuscule. Besides,
preprocessing and working with single-cell resolution data
has its own computational and biological challenges. Issues
like missing data (dropouts) and errors and biases due to
whole genome amplification are complicating analysis and
modeling of tumors using single-cell data (Lähnemann et al.,
2020). In addition, the available data (bulk or single-cell) are
usually sampled from a spatially heterogeneous tumor at the
time of diagnosis (Marusyk et al., 2020) and therefore make
it impossible to use phylogenetic reconstruction methods
to infer the order of events. Thus, the goal of inferring the
order of alterations is usually defined at the population level,
i.e., we are interested in how the disease progresses on aver-
age in patients, which is recoverable using cross-sectional
data from many tumors.

Cancer progression modeling arguably started with the work
of Fearon and Vogelstein (Vogelstein et al., 1988), where
they used data from precancerous lesions and tumors in
various stages to build a chain progression model of colon
cancer. Since then, many attempts have been made to gen-
eralize and extend cancer progression models. Modeling
progression as trees (Desper et al., 1999), a mixture of trees
(Beerenwinkel et al., 2005), and Directed Acyclic Graphs
(DAGs) (Beerenwinkel et al., 2007) and learning the cor-
responding structures are among well-studied methods for
inferring the order of alterations. More recent works consist
of methods that utilize causality (Ramazzotti et al., 2015),
pathway information (Gerstung et al., 2011), and flexible
progression modeling (Nicol et al., 2020) to reconstruct
more biologically plausible progression networks. Most of
these methods have difficulties learning the mutual exclusiv-
ity relations of alterations present in tumors (Cristea et al.,
2017) and need to take extra steps to find and incorporate
those relations into their models (Ramazzotti et al., 2015;
Nicol et al., 2020).

One of the main drawbacks of all of the papers in this do-
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main is that they reduce the measurements to binary values.
For example, for mutations, the measured values are mu-
tation allele frequencies, but for ease of computation, the
observed fractions are converted to zero one values. We
believe that, especially in bulk sequencing data, this conver-
sion results in a huge loss of information, which may end
up being crucial in inferring the order of mutations.

In this work, we use linear structural equations to model the
cancer progression DAG and propose a novel method for
learning the DAG structure from mutation allele frequencies
(MAFs). Our contributions are as follows:

• Learning cancer progression from continuous muta-
tion allele frequency data. All of the previous models
use a threshold to convert the continuous values of the
mutation allele frequency to binary. Discarding MAFs
and learning the progression network from binary data
may eliminate relevant information contained in MAFs.
To the best of our knowledge, we are the first to leverage
MAFs in learning progression networks.

• Capturing mutual exclusivity patterns between alter-
ations. It is known that mutations in genes of the same
pathway are often mutually exclusive, because single
perturbation of a pathway is sufficient for progression.
For example, in melanoma, NRAS and BRAF mutations
are seldom observed in the same samples. In contrast
to state-of-the-art methods where the mutual exclusivity
patterns should be learned separately and get injected
into the progression network inference procedure, our
proposed method learns them naturally while inferring
the progression DAG.

2. Method
Consider n samples for which allele frequencies of d mu-
tations (X1, . . . , Xd) are measured. Here, we assume
that there is an underlying DAG that represents the par-
tial order under which mutations occur in a specific can-
cer type. We represent the observations by data matrix
X ∈ Rn×d where xij ∈ [0, 1] are MAFs. We will dis-
cover a weighted DAG G with d nodes, which both de-
scribes the partial order of mutations during the tumori-
genesis and mutual exclusivity relations. Each edge (i, j)
has a weight wij ∈ [−1, 1] where wij ≥ 0 represents the
conditional probability P(Xj = 1|Xi = 1) = wij and
wij < 0 indicates the mutual exclusivity of i and j, i.e.,
P(Xj = 0|Xi = 1) = −wij . So, the positive weights
correspond to the partial order of progression and negative
weights indicate mutual exclusivity relations of mutations.

2.1. Progression Model

We assume that each cell samples a path p =
(Xp1

, . . . , Xpm
) from the progression DAG, i.e., the cell

state starts from normal and probabilistically accumulates
mutations in the order dictated by the sampled path. Note
that at step Xpi

→ Xpi+1
the progression can stop with

probability 1− wpip(i+1)
. Besides the regular progression

rule described above, there is a non-zero chance that muta-
tion Xi can occur. Under this cell-wise progression model,
one can write the number of cells with mutation i as:

Ni =

d∑
j=0

wijNj + εi, εi ∼ N(0, N2σ2) (1)

where Ni is a random variable representing the number
of cells with mutation i and εi models cells that has gain
mutation i without following the given order (spontaneous
activation describe in (Nicol et al., 2020)) or resisted acquir-
ing mutation i despite the dictating order. Note that negative
weights wij reduces Ni which is the correct behavior that
we expect from mutual exclusive mutations i and j.

The causal relationship (1) between the number of cells with
specific mutations is a form of structural equation model
(Zheng et al., 2018). Dividing both sides by the total number
of cellsN , we get the following relationship between MAFs:

Xi =

d∑
j=0

wijXj + εi, εi ∼ N(0, σ2) (2)

2.2. Structure Learning

To learn W , often, we are interested in minimizing a loss
L(W ) subject to the DAGness constraint of the graph corre-
sponding to W . The loss function is usually mean squared
error penalized with `1 penalty to induce sparsity on W .
Therefore the optimization becomes:

min
W

1

2n
‖X −XW‖2F + λ ‖W‖1 s.t. G ∈ D

(3)
where ‖.‖F is the Frobenius norm, ‖.‖1 is `1 norm, λ is the
penalty coefficient, and D is the discrete set of all possible
DAGs with d nodes.

The main issue with the optimization problem (3) is its
combinatorial nature due to the G ∈ D constraint. The set
D growths superexponentially in d and makes solving the
problem exactly NP-hard. Recently, the following continu-
ous measure was introduced in (Zheng et al., 2018) for the
characterization of acyclicity.

Theorem 1 A matrix W ∈ Rd×d corresponds to a DAG if
and only if

h(W ) = tr(eW◦W )− d = 0 (4)
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where ◦ is the Hadamard product operator. Moreover, h(W )

has a simple gradient∇h(W ) =
(
eW◦W )T ◦ 2W .

Note that h(W ) ≥ 0 is a smooth differentiable continu-
ous function of a weight matrix W , whose value indicates
“DAG-ness” of G. In other words, h(W ) = 0 for DAGs
and in loopy graphs, as the weight of loops decreases, h(W )
becomes smaller. Next, (Zheng et al., 2018) suggest to
solve the following non-convex problem (the constraint set
is non-convex) by the augmented Lagrangian method:

min
W

1

2n
‖X −XW‖2F + λ ‖W‖1 s.t. h(W ) = 0 (5)

For the cancer progression inference problem described
in Section 2.1, we solve the exact objective of (5) for a
stationary point with an extra box constraint for elements
of W , i.e., wij ∈ [−1, 1]. Finally, at the end, we adopt two
different threshold for positive and negative edges to shrink
non confident edges to zero.

3. Results
One of the major issues in validating the inferred progres-
sion network is the lack of ground truth biological knowl-
edge about the progression of cancer. We will consider
melanoma for evaluating our proposed method because we
have a partial biological understanding of its progression. In
fact, because of frequent screening for melanoma, precan-
cerous lesions and tumor samples are obtained in different
stages across the patient population. Thus, we have a bet-
ter understanding of early and late alterations (Shain et al.,
2015; Akbani et al., 2015). Here, we apply our proposed
method to metastatic melanoma data of The Cancer Genome
Atlas (TCGA) (Cancer Genome Atlas Research Network
et al., 2013) and show that we can recover the known bio-
logical facts about the progression of melanoma.

3.1. Data and Preprocessing

The Mutation Allele Frequency (MAF) data of TCGA’s
Skin Cutaneous Melanoma (SKCM) is downloaded from
the NCI Genomic Data Commons Data Portal. The data
matrix consists of 470 samples and 21220 features, which
are MAFs of all genes. As a preprocessing step, a set of
driver mutations are selected using the results of a recent
study (Bailey et al., 2018), where multiple driver-gene iden-
tification methods and tools have been combined and tested
on TCGA’s data. The reported driver genes of melanoma
in (Bailey et al., 2018) consists of 24 different genes. Next,
we filtered out some of the genes with the insights provided
by cBioPortal tool (Cerami et al., 2012; Gao et al., 2013).
The discarded genes have no reported mutation hotspots,
have a small proportion of nonsense mutations (truncating),
and their reported missense mutations are uniformly spread
across their cDNA with no known pathogenicity. These

properties suggest that the discarded mutations tend to have
no significant effects in melanoma. The preprocessing step
leaves us with n = 439 samples and d = 19 driver-genes.

3.2. Recovered Progression Network

To quantify the uncertainty of recovered edge weights, we
use bootstrap. We run our method on 100 bootstrap samples
and report the average weight for each edge. We then use
the t-test to check that the average percentage of times an
edge is recovered is over the given threshold of τ . For this
experiment, we pruned positive edges of weights below
the threshold of w+ = 0.09 and negative edges of weights
above the threshold of w− = −0.01.

The inferred progression DAG of melanoma is illustrated in
Figure 1. Note that the final number of nodes in the figure is
15 because four of the driver mutations (KIT, GNA11, HRAS
and KRAS) were isolated and therefore we omitted them.

BRAF, NRAS, NF1, and TP53 have the highest rate of mu-
tation in melanoma. The negative edges of (BRAF, NRAS)
and (BRAF, NF1) suggest that they are mutually exclusive,
as reported before (Akbani et al., 2015). After removing
the negative edges (in red), the remaining graph represents
the progression network. The main roots of the network
are BRAF and NRAS and they share many descendants
where the most important one is TP53. Since NF1 is not
co-occurring with BRAF it seems that the progression or-
der toward NF1 is NRAS→ TP53→ NF1. The strongest
observed edge in the graph is (BRAF, PTEN).

4. Discussion
There are various studies (Kunz, 2014; Akbani et al., 2015;
Rajkumar & Watson, 2016) on skin cancer, attempting to dis-
tinguish melanoma subtypes. Based on these studies, there
are four main subtypes for melanoma. The BRAF mutation
identifies the largest genomic subtype. This subtype consists
of more than half of the melanoma cases. Our recovered
network places BRAF at one of the roots of progression,
which is aligned with the fact that it defines a subtype and
also has been known to occur early in melanoma (Shain
et al., 2015). The RAS mutation family ({N,K,H}-RAS but
mostly NRAS) determines the second genomic subtype of
melanoma, which occurs in about a quarter of melanoma
tumors. NRAS is selected as another root for the progression
graph, which is in agreement with being a subtype hallmark.

The third subtype of melanoma is identified by NF1 muta-
tion. This mutation has happened in about 30% of samples,
which has no BRAF or NRAS mutations. Our model does
not capture the NF1 as a separate root but recovers a nega-
tive edge between BRAF and NF1 which suggests mutual
exclusivity of the two. The last melanoma subtype is Triple-
wild, i.e., samples without any of the BRAF, NRAS, and
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Figure 1. Inferred Progression Network of Melanoma

NF1 mutations. This subtype’s frequency is much lower
than the other ones (lower than 10%). The most related
mutation attributed to this subtype occurs in KIT, which is
present in around 4% of samples. KIT mutation becomes an
isolated node and is not shown in the progression network
of Figure 1.

Our method captures negative edges (BRAF, NRAS) and
(BRAF, NF1), which suggests their mutual exclusivity. Mu-
tual exclusivity of both pairs has been reported in the litera-
ture (Davies et al., 2002; Davies & Samuels, 2010). The re-
covered negative weights show our proposed model’s ability
to learn mutual exclusivity relations simultaneously along
with the progression network.

There are studies which claim that mutation in CDKN2A and
TP53 occur in intermediate and advanced melanoma (Shain
et al., 2015; Davis et al., 2018). In our recovered progression
network, they occur after BRAF or NRAS. Finally, the TP53
mutation is known to be a frequent mutation occurring in
all major subtypes of BRAF, NRAS, and NF1 (Davis et al.,
2018). In our inferred progression DAG, there are direct
paths that connect TP53 and all major mutations of various
subtypes.

5. Conclusion
In this paper, we presented a novel approach for inferring
cancer progression network from mutation allele frequency
of cross-sectional tumor data. We formulated the problem
as a continuous non-convex optimization over the class of

DAGs, representing the underlying partial order of muta-
tions occurring in cancer. The proposed method is able
to take allele frequencies as input and finds mutually ex-
clusive mutations while learning the progression network.
We demonstrated these abilities of the method by using the
TCGA Skin Cutaneous Melanoma data set as a case study.
We showed that our model recovers a progression network
that matches the known biological facts about tumorigen-
esis of melanoma and also captures the well-established
mutual exclusivity patterns that are genomic hallmarks of
melanoma subtypes.
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