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Abstract

Learning robust representations can help uncover
underlying biological variation in scRNA-seq
data. Disentangled representation learning is one
approach to obtain such informative as well as
interpretable representations. Here, we learn dis-
entangled representations of scRNA-seq data us-
ing [ variational autoencoder (8-VAE) and apply
the model for out-of-distribution (OOD) predic-
tion. We demonstrate accurate gene expression
predictions for cell-types absent from training in
a perturbation and a developmental dataset. We
further show that 3-VAE outperforms a state-of-
the-art disentanglement method for scRNA-seq in
OOD prediction while achieving better disentan-
glement performance.

1. Introduction

In disentanglement learning, a single latent dimension is
linked to a single generative feature, while being relatively
invariant to changes in other features (Ridgeway, 2016;
Bengio et al., 2013; Chen et al., 2016). Inversely, by ma-
nipulating values of a single dimension in the latent space,
only a single generative feature is perturbed. Such repre-
sentations allow for more interpretable latent spaces. This
is particularly relevant for scRNA-seq data, where finding
a biologically interpretable representation is desired. The
characteristics of a disentangled representation also allow
for Out of Distribution (OOD) prediction. In OOD predic-
tion, the gene expression of a cell-type absent from training
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in the desired condition is extrapolated. This could apply to
an unmeasured cell-type after a perturbation or as part of
a developmental trajectory. Recent models have addressed
OOD predictions for scRNA-seq in context of perturbation
and disease. (Lotfollahi et al., 2019b;a). Although these
models aim to provide a meaningful representations of the
data, they do not learn a disentangled representation. The
work proposed in (Lopez et al., 2018) is a step towards inter-
preting scRNA-seq with disentangled representations. The
authors propose a VAE regularized with d-variable Hilbert-
Schmidt Independence Criterion (dHSIC), which improves
hypothesis testing by removing information corresponding
to nuisance variables related to quality control measures.
However, in addition to VAE parameters, the dHSIC frame-
work requires additional hyper-parameters to optimize the
HSIC loss, making the optimization problem even harder.
The authors also did not provide insight into the identity of
individual learned dimensions for single-cell, thus adding
no additional interpretability to current methods. To address
these problems we propose to use a S-VAE model (Hig-
gins et al., 2017; Burgess et al., 2018), a fully unsupervised
model for disentanglement learning. We apply 3-VAE on
scRNA-seq data and show that the model successfully de-
composes data into major interpretable generating factors
such as cell-types and perturbations. We further demon-
strate that obtained interpretable factors can be exploited for
OOD predictions. Finally, we illustrate that 5-VAE outper-
forms dHSIC in both disentanglement learning and OOD
prediction.

2. Methods

A modified Variational Autoencoder (VAE) (Kingma &
Welling, 2013; Kingma et al., 2014; Rezende et al., 2014)
was employed for disentanglement learning as proposed
previously by (Higgins et al., 2017; Burgess et al., 2018). It
includes a linearly increasing controlling capacity C' such
that the KL divergence term is driven towards C. This
allows more information to flow through the latent space,
thus encouraging disentanglement. The deviation of the KL
divergence loss from C' is penalized by /5. This model is
referred to as ’5-VAE’ model. Here the two available tuning
parameters were 3 and C.
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Figure 1. Comparison between latent representations of S-VAE (=5 and C=30) and dHSIC (=1 and y=50) models in the Kang dataset.
(a) shows units that disentangle ’cell-type’ and ’condition’ best in 8-VAE along with KL divergence plot. Similarly, (b) shows the units

for dHSIC model.

The second approach restricts the search space for the ap-
proximated posterior in a VAE by kernel-based measures of
independence (Lopez et al., 2018). In particular it uses the
d-variable Hilbert-Schmidt Independence Criterion (dHSIC)
(Gretton et al., 2005; Pfister et al., 2016) to enforce inde-
pendence between the latent representations and arbitrary
nuisance factors. This was modified to enforce indepen-
dence between the different dimensions of latent space. By
scaling and adding this to the original VAE objective func-
tion, a new regularisation criteria was created. Therefore, by
penalizing the dHSIC kernel value for sampled latent space,
the model makes the dimensions independent of each other
which in turn encourages disentanglement. This model is
referred to as ’"dHSIC-VAE’ model. Here the two parame-
ters were 3, weight for KL divergence loss and ~y, weight
for dHSIC kernel value.

To identify suitable hyper-parameters for the models, we
systematically ran grid-searches and selected a set of hyper-
parameters for each model that provided both good disen-
tanglement as well as good reconstruction performance on
the validation data.

To quantify disentanglement, we used the Disentanglement
Score proposed by (Higgins et al., 2017). It relies on the
main assumption that a few of the generative factors are
conditionally independent and also interpretable. To apply
the metric, data points which shared a single feature (e.g.
same cell-type) were randomly picked. They were mapped
to the latent space and their differences to each other were
calculated. If the independence and interpretability proper-
ties hold for the learnt representations, there should be less
variance in the inferred latent dimension that correspond to
the fixed feature (cell-type in this case). A linear classifier
was then used to identify this fixed feature by classifying the
difference value in latent spaces and report the accuracy as
the final disentanglement metric score. Smaller variance in
the latent unit corresponding to the target factor will make
the classifier more accurate, resulting in a higher score.
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3. Results

3.1. Disentanglement learning enable predicting
cellular responses

To compare disentanglement performance, we trained both
B-VAE and dHSIC on a peripheral blood mononuclear cell
(PBMC) scRNA-seq data. This dataset contains, 13944
cells, 14053 genes and 12 different cell-types in both con-
trol and IFN-/3 stimulated conditions (Kang et al., 2018).
Both models learnt to disentangle two features ’condition’
and ’cell-type’. The dHSIC model also gave promising
results, however not better than the 5-VAE . Figure 1 com-
pares the latent representations and values of KL divergence
loss. It can be seen from the KL loss plots in the figure, that
only the units that were active earlier in the training phase
are disentangled. Additionally, the units that gain high value
of KL loss later in the training, are not disentangling with
"condition’ or "cell-type’ features. They could be associated
with some other unknown generative factors. Table 1 com-
pares the disentanglement scores. It can be seen that the
scores are very close for both models. However, the 3-VAE
model performs slightly better than the dHSIC model.

Table 1. Disentanglement Scores (best dimension in bold).
B-VAE model on Kang data: 5=5, C=30; dHSIC model on Kang
data: =1, v=50. B-VAE model on Dent. Gyrus data: =50,
C=30; dHSIC model on Dent. Gyrus data: S=1, v=50.

[: B-VAE model; dH: dHSIC model; CT: cell-type disentangle-
ment; C: condition disentanglement; Dim: latent dimension.

Kang Dataset Dent. Gyrus

Dim gCT pBC dHCT dHC pBCT dHCT
1 0.41 0.33 0.00 0.25 0.23 0.29
2 0.98 0.45 0.78 0.38 0.63 0.76
3 0.48 0.00 0.34 0.86 0.00 0.66
4 0.76 0.38 0.96 0.44 0.00 0.00
5 0.34 0.86 0.36 0.27 0.87 0.72

Next, we sought to predict OOD "CD4 Naive T’ cells. We
excluded both control and stimulated 'CD4 Naive T cells
during the training phase. After training, we identified the
latent dimensions encoding ’cell-type’ feature. By linearly
interpolating this dimension, we could start from one cell-
type and then generate new cells that would vary in only
“cell-type’ feature, recovering the held-out cells. We took a
stimulated B-cell (source cell) and mapped it to the latent
space. Then, we manipulated the values in the dimension
that disentangled ’cell-type’. This way we could recover
stimulated 'CD4 Naive T cell (target cell). As this dimen-
sion encoded ’cell-type’ feature only, we kept the perturba-
tion feature invariant and changed only ’cell-type’. Simi-
larly, we recovered control 'CD4 Naive T’ from a control B’
cell-type using the same dimension that encoded ’cell-type’

feature. Figure (2) compares OOD prediction from both the
(B-VAE model and dHSIC. 5-VAE outperformed dHSIC by
achieving more accurate predictions (Figure 2, left column).
The PCA plot shows that the predicted cells in the 5-VAE
are closer to the real cells when compared to dHSIC.
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Figure 2. (a-b) OOD prediction comparison between [3-VAE
(8=20 and C'=30) model and dHSIC (=1 and y=50) models.
R? denote the squared Pearson correlation of mean gene expres-
sion between predicted and real cells. Red dots denote top 5 DEGs
in target cells. The PCA plot shows the target cell ('CD4 Naive
T’), source cells (’B’) and the newly predicted cells.

3.2. Disentanglement learning allows recovery of
missing cell-type from developmental trajectory

We further evaluated disentanglement performance of both
models on a dataset from mouse dentate gyrus (Hochgerner
et al., 2018). The data consists of 25,919 genes across
2,930 cells forming multiple lineages. The cells are grouped
into 14 clusters by graph-based clustering. In the Dentate
Gyrus dataset, both models learnt to disentangle cell-types.
The dHSIC model also gave promising results, however not
better than the 5-VAE. Figure 3 compares the latent repre-
sentations and value of KL loss for both the models. The
units that were active initially and had the highest KL diver-
gence showed the most disentanglement. Table 1 compares
the disentanglement scores. It can be seen that 3-VAE had
higher scores than dHSIC model.

We hypothesised the cell type dimension could also capture
the order of development and thus represent a developmen-
tal trajectory. To test this, we performed velocity analysis
using scVelo (Bergen et al., 2019). A dominating devel-
opmental trajectory can be seen starting from 'nIPC’ to
"Granule immature’ via ’Neuroblast’ (Figure 4). It shows
that ’Neuroblast’ develops into 'Granule immature’ cells.
We excluded ’Granule immature’ cells from the training
data and attempted to recover them using 'Neuroblast’ cells.
We sought to find latent dimensions that would encode the
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Figure 3. Comparison between latent representations of 3-VAE
(8=50 and C'=30) and dHSIC (=1 and y=50) models in the Den-
tate Gyrus dataset. (a) shows units that disentangle "cell type’ best
in 8-VAE along with KL divergence plot. Similarly, (b) illustrates
the unit for dHSIC model.

development trajectories of these cells. We tested recovery
of "Granule immature’ through linear interpolation starting
from ’Neuroblast’ for all dimensions. The dimension that
recovered 'Granule immature’ was the one that disentangled
cell types.
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Figure 4. RNA Velocity on Dentate Gyrus dataset.

We observe 3-VAE achieved more accurate results (Figure
5 left column) while having smoother transition between
source and target cell types (Figure 5 right column). This
observation confirms that 8-VAE accurately captured con-
tinuous transition between cell types in a developmental
trajectory.
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Figure 5. (a-b), OOD prediction comparison in Dentate Gyrus
Dataset between S-VAE (5=100 and C'=30) and dHSIC (=1 and
+=50) models. R? denote the squared Pearson correlation of mean
gene expression between predicted and real cells. Red dots denote
top 5 DEGs in target cells. The PCA plot shows the target cell
(’Neuroblast’), source cells ('Granule immature’) and the newly
predicted cells.

4. Conclusion

We demonstrated that disentanglement representation learn-
ing provides interpretable factors for downstream tasks. We
exemplified this by leveraging these factors to predict gene
expression of cell types not seen in training data after a
perturbation and also during brain development. We further
illustrated that the S-VAE model achieves better feature dis-
entanglement and prediction than the state-of-the-art dHSIC
method on single-cell data. We envision that disentangle-
ment learning on single-cell data can provide more inter-
pretable representations leading to better understating of the
underlying biology and cellular heterogeneity. The code for
the model and the accompanying data can be obtained from
https://bit.ly/3bRLpzL
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