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Abstract
Single cell genomics experiments can reveal the
keystone cellular actors in complex tissues. How-
ever, annotating cell type and state identities for
each molecular profile in these experiments re-
mains an analytical bottleneck. Here, we present
scNym, a semi-supervised adversarial neural net-
work that learns to transfer cell identity annota-
tions from one experiment to another. scNym
uses the semi-supervised MixMatch framework
and domain adversarial training to take advantage
of information in both the labeled and unlabeled
datasets. scNym offers superior performance to
baseline approaches in transferring cell identity
annotations across experiments performed with
different technologies or in distinct biological con-
ditions. We demonstrate with ablation experi-
ments that semi-supervision and adversarial train-
ing techniques improved both the performance
and calibration of scNym models. We also show
that scNym models are well-calibrated and in-
terpretable with saliency methods, allowing for
review of model decisions by domain experts.

1. Introduction
Single cell genomics allows for simultaneous molecular
profiling of thousands of diverse cells (Trapnell, 2015). To
derive biological insight from these data, each single cell
molecular profile must be annotated with a cell identity,
such as a cell type or state label. This task is traditionally
performed manually, which can be time-consuming and er-
ror prone. Existing automated tools (Abdelaal et al., 2019)
learn relationships between cell identity and molecular fea-
tures from a training set with existing labels (x, y) ∼ D
without considering the unlabeled target dataset u ∼ U
in the learning process. Results from the semi-supervised
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learning literature suggest that incorporating information
from U during training can improve the performance of
prediction models (Oliver et al., 2018).

To make use of information in the unlabeled target dataset
for cell type classification, we have developed a semi-
supervised, adversarial neural network model scNym. In the
typical supervised learning framework, the model touches
the target unlabeled dataset to predict labels only after train-
ing has concluded. In contrast, our semi-supervised learning
framework trains the model parameters on both the labeled
and unlabeled data in order to leverage the structure in the
target dataset, whose measurements may have been influ-
enced by myriad sources of biological and technical bias
and batch effects.

scNym uses the unlabeled target data through a combination
of MixMatch semi-supervision (Berthelot et al., 2019) and
by training a domain adversary (Ganin et al., 2016). The
MixMatch semi-supervision combines MixUp data augmen-
tations (Zhang et al., 2017), pseudolabeling of the target
data (Lee, 2013; Verma et al., 2019), and an interpolation
consistency penalty to improve generalization across the
training and target domains.

By training a domain classification model as an adversary,
scNym models learn a domain adapted embedding of the
training and target datasets in addition to a performant iden-
tity classifier (Fig. 1A). Our model requires no prior manual
specification of marker genes and yields a well-calibrated,
continuous metric of classification confidence. We also
provide model interpretation methods (Springenberg et al.,
2014) to analyze which genes drive cell type classification
decisions.

2. Approach
We train scNym models fθ : x → p(y|x) on normalized
mRNA abundance profiles and labels (x, y) from the train-
ing dataset and unlabeled profiles u from the target dataset.
We implement fθ as a four-layer neural network with batch
normalization, ReLU activations, dropout regularization,
and a softmax activation on the final layer. Each hidden
layer has 256 units. We sample minibatches X from the
training set and U from the target set. At each training
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scNym: Semi-supervised adversarial neural networks for single cell classification

Figure 1. scNym transfers cell identity annotations between sequencing technologies in the mouse lung. (A) Graphical depiction
of the scNym training procedure. Pseudolabels are generated for each observation in the unlabeled target data using model predictions and
augmented with MixUp. An adversary is also trained to discriminate training and target observations. We train model parameters using a
combination of supervised classification, interpolation consistency, and adversarial objectives. (B) scNym models were trained on young
cells in the Rat Aging Cell Atlas and used to predict labels for aged cells. (C) Ground truth cell type annotations for the aged cells of
the Rat Aging Cell Atlas shown in a UMAP projection. (D) scNym predicted cell types in the target dataset. scNym predictions match
ground truth annotation in the majority (>90%) of cases. (E) Accuracy scores for scNym models and other state-of-the-art classification
models. We find that scNym yields significantly higher accuracy scores than baseline methods (p < 0.01, Wilcoxon Rank Sums). Note:
multiple existing methods could not complete this task. (F) Skeletal muscle cells labeled with ground truth annotations (left), scmap-cell
predictions (center), and scNym predictions (right) are displayed in a UMAP projection. scNym accurately predicts multiple cell types
that are confused by scmap-cell (arrows).

iteration, our model fθ is used to generate pseudolabels
zi = fθ(ui) for unlabeled examples in a minibatch. We
minimize pseudolabel entropy with a temperature sharpen-
ing operation zi = z2i /

∑
z2i .

After pseudolabel generation, we further augment sam-
ples using MixUp (Zhang et al., 2017) weighted averages
across the pseudolabeled minibatch and a labeled mini-
batch. We keep track of the dominant sample in each mixed
pair and preserve labeled versus pseudolabeled identities
on the mixed outputs. We sample the MixUp parameter
from a symmetric Beta distribution λ ∼ Beta(α, α) where
α = 0.3.

We then apply a supervised cross-entropy loss
Lsup = E[H(ym, fθ(xm)] to mixed, labeled exam-
ples (xm, ym) and a semi-supervised mean squared error
penalty LSSL = E[‖zm − fθ(um)‖22] on the difference
between mixed pseudolabels zm and model predictions
on the mixed, pseudolabeled observations um, where ‖·‖2

is the `2-norm. These losses are balanced by a weight
function λSSL(t)→ [0, 1] that we scale over 100 epochs of
training with a sigmoid schedule.

We additionally train a domain adversary model (Ganin
et al., 2016) gφ at each iteration. We implement gφ as a
two-layer neural network with a softmax activation on the
final layer. We train the adversary to predict the domain of
origin di ∈ {0, 1} for each point given the penultimate layer
embedding of the classification model vi = fθ(xi)

(l−1),
such that gφ : vi → d̂i. We optimize the adversary gφ
with standard gradient descent and a cross-entropy loss
Ladv = E[H(di, gφ(vi))], but we use the “gradient reversal
trick,” to update the classifier parameters θ using the inverse
of the adversary’s gradients: θt ← θt−1 + ηwt

∂Ladv
∂θ , where

wt → [0, 0.1] is a gradient weight we scale with a sigmoid
schedule over 20 epochs. Our final loss is then:

L(θ,X,U, t) = Lsup + λSSL(t)LSSL + Ladv
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Algorithm 1 scNym training for one epoch.

Input: train set D = {xi, yi}Ni , target set U = {ui}N
′

i

Models: Classifier fθ, Adversary gφ
for minibatches X ∈ D do

Draw unlabeled minibatch U ∼ U
Pseudolabel target examples zi = fθ(ui)
Concat. batches W = X :: U; (w, q) ∼W
MixUp wm = Mixλ(wi, wk); qm = Mixλ(qi, qk)
Split batches X′ = W1:N ;U′ = WN :N ′

Adversarial prediction d̂i = gφ(fθ(xi)
(l−1))

Compute Lsup = E(xm,ym)∼X′ [H(ym, fθ(xm))]
Compute LSSL = E(um,zm)∼U′ [‖zm − fθ(um)‖22]
Compute Ladv = Eu∼U;x∼X[H(di, d̂i)]
Backpropagate∇L = Lsup + λSSL(t)LSSL + Ladv

θt ← θt−1 − η[∂Lsup

∂θ + ∂LSSL
∂θ − wt

∂Ladv
∂θ ]

φt ← φt−1 − η[∂Ladv
∂θ ]

end for

We minimize the loss over 400 training epochs with the
Adadelta optimizer using a weight decay 10−5, initial learn-
ing rate η = 1.0, and early stopping based on a validation
set. We outline a single epoch of our training procedure in
(Algorithm 1).

3. Results
3.1. Cell type classification benchmark tasks

We evaluated the performance of scNym to transfer cell
identity annotations in five distinct tasks. These tasks were
chosen to capture diverse kinds of technological and bio-
logical variation that complicate annotation transfer. All
of our tasks represent a true cell type transfer across dif-
ferent experiments, in contrast to some efforts that report
within-experiment hold-out accuracy.

We first evaluated cell type annotation transfer between
animals of different ages. We trained scNym models on cells
from young rats (5 months old) from the Rat Aging Cell
Atlas (Ma et al., 2020) and predicted on cells from aged rats
(27 months old, Fig. 1B). We found that predictions from
our scNym model trained on young cells largely matched
the ground truth annotations (92.2% accurate) on aged cells
(Fig. 1C, D).

We compared scNym performance on this task to six state-
of-the-art single cell RNA-seq cell identity annotation meth-
ods (Kiselev et al., 2018; Alquicira-Hernandez et al., 2019;
Tan & Cahan, 2019; Abdelaal et al., 2019; de Kanter et al.,
2019). scNym produced significantly improved labels over
these methods, some of which could not complete this large
task on our hardware (256GB RAM; Wilcoxon Rank Sums,
p < 0.01, Fig. 1E, Table 1). We found that some of the
largest differences in accuracy between scNym and the com-

Figure 2. scNym models are interpretable and well-calibrated.
(A) We used rectified backpropagation to derive saliency maps for
each stimulated PBMCs classified with scNym models trained on
unstimulated PBMCs. We recover known marker genes of many
cell types (e.g. CD79A for B cells, PPBP for magekaryocytes). (B)
MixMatch and adversarial training reduce the expected calibration
error of scNym models for stimulated PBMC predictions. (C) Low
confidence scores highlight incorrect scNym predictions (arrows)
in stimulated PBMCs.

monly used scmap-cell method were in the skeletal muscle.
scNym models accurately classified multiple cell types in
the muscle that are confused by scmap-cell, demonstrat-
ing that the increased accuracy of scNym is meaningful for
downstream analyses (Fig. 1F).

We next tested the ability of scNym to classify cell identities
after perturbation. We trained on human PBMCs in the
absence of stimulation and predicted on PBMCs after stimu-
lation with IFNβ (Kang et al., 2017). scNym achieved high
accuracy (> 91%), superior to baseline methods (Table 1).

To evaluate the ability of scNym models to transfer labels
across different experimental technologies, we trained sc-
Nym models on single cell profiles from ten mouse tissues
in the “Tabula Muris” captured using the 10x Chromium
technology and predicted labels for cells from the same ex-
periment captured using Smart-Seq2 (SS2) (Tabula Muris
Consortium, 2018). We found that scNym predictions were
highly accurate (> 90%) and superior to baseline methods
(Table 1).

In a second cross-technology task, we trained scNym on
mouse lung data from the Tabula Muris and predicted on
lung data from the “Mouse Cell Atlas,” a separate mouse
cell atlas effort that used a distinct single cell RNA-seq tech-
nology (Han et al., 2018). We found that scNym yielded
superior classification accuracy (> 90%) on mouse lung
cell types in the Mouse Cell Atlas despite experimental
batch effects and differences in the sequencing technolo-
gies (Table 1). We also trained scNym models to transfer
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scmap-cell scmap-cluster SVM singleCellNet scPred CHETAH scNym

Young to Old Rat 87.2 86.8 91.7 N/A N/A N/A 92.2
hPBMC Cross-Stim 38.3 78.4 81.9 90.3 60.5 49.9 91.7
TM 10x to MCA 89.7 83.3 88.4 80.9 62.4 85.5 91.4
TM 10x to SS2 92.3 88.3 93.1 85.9 70.1 86.9 93.6
Spatial Txn 81.8 76.7 92.1 87.7 92.3 56.6 91.6

Table 1. Comparison of model performance across tasks. Mean accuracy across 5-fold training split is reported. Bold text marks best
models per task (p < 0.05, Wilcoxon Rank Sums). N/A indicates that a model could not complete the task on our hardware (256 GB of
RAM).

regional identity annotations in spatial transcriptomics data
from mouse brain sections (10x Genomics, 2020) and found
performance competitive with baseline methods (Table 1).
Together, these results demonstrate that scNym models can
transfer cell type annotations across technologies and exper-
imental environments with high performance.

3.2. Ablation Experiments

We ablated different components of our scNym model to
determine which features were responsible for high perfor-
mance. We found that semi-supervision with MixMatch
and training with a domain adversary improved model per-
formance (Wilcoxon Rank Sums, p < 0.05). This result
was observed for multiple tasks. We hypothesized that sc-
Nym models might benefit from domain adaptation through
the adversarial model. We found that training and target
domains were significantly more mixed in scNym embed-
dings, supporting this hypothesis (Wilcoxon Rank Sums on
entropy of batch mixing, p < 0.05). These results suggest
that semi-supervision and adversarial training improve the
accuracy of cell type classifications.

3.3. scNym models are interpretable using saliency
methods

To interpret the classification decisions of our scNym mod-
els, we developed saliency analysis tools to identify genes
that influence model decisions (Springenberg et al., 2014).
We found that salient genes included known markers of spe-
cific cell types (e.g. CD79A for B cells, GNLY for NK cells),
in addition to genes that may not have been chosen heuris-
tically (Fig. 2A). This result provides confidence that our
models are learning biologically meaningful representations
that are likely to transfer across experiments.

3.4. scNym models are well-calibrated

We also investigated the calibration of our scNym models
by comparing the prediction confidence scores to predic-
tion accuracy (Thulasidasan et al., 2019). We found that
MixMatch improved model calibration, such that high con-
fidence predictions are more likely to be correct (Fig. 2B).
scNym confidence scores can therefore be used to highlight

cells that may benefit from manual review, further improv-
ing the annotation exercise when it contains a domain expert
in the loop (Fig. 2C).

scNym confidence scores can also highlight unseen cell
types in the target dataset using a modified training proce-
dure that incorporates pseudolabel thresholding, inspired by
FixMatch (Sohn et al., 2020). We simulated an experiment
where we “discover” multiple cell types by predicting an-
notations on the Tabula Muris brain cell data using models
trained on non-brain tissues. New cell types not present in
the training data were given low confidence scores, high-
lighting these cells as potential cell type discoveries (> 95%
recall).

4. Conclusion
Our benchmark results demonstrate that scNym models pro-
vide high performance across a range of cell identity classi-
fication tasks, including cross-age, cross-perturbation, and
cross-technology. scNym performs better than six state-of-
the-art baseline methods across varied tasks and is the only
method here with high performance (>90% accuracy) on
all tasks. Through ablation experiments, we show that Mix-
Match semi-supervision and domain adversarial training
improve model performance. These methods also improve
model calibration, such that scNym confidence scores can
be used to identify cells for manual refinement. Our saliency
analysis experiments show that scNym models learn intu-
itive, biologically relevant features for cell type classifi-
cation and highlight features that drive decisions for low
confidence cells during manual curation.

Our results collectively demonstrate that semi-supervised
and adversarial learning methods provide promising perfor-
mance benefits for cell identity classification models and mo-
tivate further adaptation of these techniques for single cell
genomics applications. We aim to enable widespread use
of these methods via the release of their open source imple-
mentations, tutorials, and pre-trained models for mouse, rat,
and human cell types available from anonymous.url.
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