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Abstract
Data integration of single-cell measurements is
critical for our understanding of cell development
and disease, but the lack of correspondence be-
tween different types of single-cell measurements
makes such efforts challenging. Several unsuper-
vised algorithms are capable of aligning hetero-
geneous types of single-cell measurements in a
shared space, enabling the creation of mappings
between single cells in different data modalities.
We present Single-Cell alignment using Optimal
Transport (SCOT), an unsupervised learning al-
gorithm that uses Gromov Wasserstein-based op-
timal transport to align single-cell multi-omics
datasets. SCOT calculates a probabilistic cou-
pling matrix that matches cells across two datasets
based on k-nearest neighbor distances. It uses
the resulting coupling matrix to align and project
one single-cell dataset onto another. We compare
the alignment performance of SCOT with state-
of-the-art algorithms on three simulated and two
real datasets and demonstrate that SCOT is com-
parable in quality to competing methods but is
significantly faster and requires tuning fewer hy-
perparameters. The code is available at https:
//github.com/rsinghlab/SCOT.

1. Introduction
Single-cell measurements provide a fine-grained view of
the heterogeneous landscape of cells in a sample, reveal-
ing distinct subpopulations and their developmental and
regulatory trajectories across time. The availability of mea-
surements capturing various properties of the genome, such
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as gene expression, chromatin accessibility, histone mod-
ifications, and chromatin 3D conformation, has increased
the need for data integration methods capable of combining
these disparate data types. Due to technical limitations, it
is hard to obtain multiple types of measurements from the
same individual cell. Furthermore, when we measure differ-
ent properties of a cell—such as its transcriptional and 3D
chromatin profiles—we cannot a priori identify correspon-
dences between features in the two domains. Accordingly,
integrating two or more single-cell data modalities requires
methods that do not rely on either common cells or common
features across the data types (Amodio & Krishnaswamy,
2018; Welch et al., 2019; 2017; Stuart et al., 2019).

Liu et al. (Liu et al., 2019) proposed a global manifold align-
ment algorithm based on the maximum mean discrepancy
(MMD) measure, called MMD-MA, which can integrate dif-
ferent types of single-cell measurements. Another method,
UnionCom (Cao et al., 2020), performs unsupervised topo-
logical alignment for single-cell multi-omics data to empha-
size both local and global alignment. Neither method re-
quires any correspondence information between the datasets
but do require tuning four hyperparameters.

A number of applications across various research areas
(Galichon, 2017; Alvarez-Melis & Jaakkola, 2018) use op-
timal transport to learn a mapping between different data
distributions. Optimal transport finds the most cost-effective
way to move data points from one domain to another. One
way to think about optimal transport is as the problem of
moving a pile of sand to fill in a hole through the least
amount of work. The optimal transport framework has been
used in various biological applications (Schiebinger et al.,
2019; Yang et al., 2018; Yang & Uhler, 2019).

The classical optimal transport method requires datasets to
be in the same metric space. Mémoli et al. (Mémoli, 2011)
generalized optimal transport to the Gromov-Wasserstein
distance, which compares metric spaces directly instead
of comparing samples across spaces. In the natural lan-
guage processing community, Alvarez et al. (Alvarez-Melis
& Jaakkola, 2018) used this approach to measure similar-
ities between pairs of words across languages. As far as
we are aware, the only biological application of Gromov-
Wasserstein optimal transport comes from (Nitzan et al.,
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Figure 1. Schematic of SCOT applied to single-cell multi-omics data alignment.

2019), which uses it to reconstruct the spatial organization
of cells from transcriptional profiles.

We present Single-Cell alignment using Optimal Transport
(SCOT), an unsupervised learning algorithm that employs
Gromov Wasserstein optimal transport to align single-cell
multi-omics datasets while preserving local geometry. Un-
like MMD-MA and UnionCom, our algorithm requires tun-
ing only two hyperparameters and is robust to the choice
of one. We compare the alignment performance of SCOT
with MMD-MA and UnionCom on three simulated and
two real-world datasets to demonstrate that SCOT aligns
all the datasets as well as the state-of-the-art methods and
converges ∼15 and ∼50 times faster than MMD-MA and
UnionCom, respectively.

2. Methods
SCOT uses Gromov Wasserstein optimal transport, which
preserves local neighborhood geometry when moving data
points. The output of this transport problem is a matrix of
probabilities that represent how likely it is that data points
from one space correspond to data points in the other space.
These probabilities can then be used to project the data
into the same space for alignment. In this section, we first
introduce the formulation of optimal transport followed by
its extension to Gromov-Wasserstein distance. Finally, we
present the details of our SCOT algorithm.

We present these methods for two sets of points: X =
(x1, x2, . . . , xnx) from the measure space (X , p) and Y =
(y1, y2, . . . , yny ) from the measure space (Y, q). We define
discrete measures p and q over our data points, representing
marginal distributions of X and Y respectively, which we
can write as

p =

nx∑
i=1

piδxi
and q =

ny∑
j=1

qjδyj ,

where δxi is the Dirac measure. We do not require any
correspondence information across the data sets but assume

that there is some underlying shared manifold structure.

2.1. Optimal Transport

The Kantorovich optimal transport problem seeks a minimal
cost coupling between two probability distributions to tie
them in a meaningful way (Peyré et al., 2019). Referring
back to the problem of moving a sand pile to fill in a hole,
Kantorovich optimal transport allows us to split the mass
of a grain of sand instead of moving the whole grain. For
discrete measures, the set of possible couplings are the
matrices

Π(p, q) = {Γ ∈ Rnx×ny

+ : Γ1ny
= p, ΓT1nx

= q}. (1)

Each row Γi of a coupling Γ tells us how to split the mass
of data point xi onto the points yj for j = 1, . . . , ny, and
the condition Γ1ny

= p requires that the sum of each row
Γi is equal to the probability of sample xi.

Given discrete measures p and q and a cost matrix C ∈
Rnx×ny where Cij is the cost of transporting point xi to
point yj , the discrete optimal transport problem learns a
minimal coupling that attains

min
Γ∈Π(p,q)

〈Γ, C〉. (2)

Intuitively, the cost function says how many resources it
will take to move xi to yj , and the coupling Γ assigns a
probability Γij that xi should be moved to yj for each xi
and yj in the two spaces.

Although this problem can be solved with minimum cost
flow solvers, it is usually regularized with entropy for more
efficient optimization and empirically better results (Cuturi,
2013). Thus, the optimal transport problem that is solved
numerically is

min
Γ∈Π(p,q)

〈Γ, C〉 − εH(Γ), (3)

where ε > 0 and H(Γ) is Shannon entropy.
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Table 1. Alignment performance, using average FOSCTTM scores (lower is better), of SCOT, MMD-MA, and UnionCom for all datasets.
Sim. 1 Sim. 2 Sim. 3 scGEM SNAREseq

SCOT 0.070 0.006 0.008 0.206 0.198
MMD-MA 0.124 0.032 0.012 0.201 0.149
UnionCom 0.084 0.027 0.152 0.217 0.265

The addition of entropy diffuses the optimal coupling,
meaning that more masses will be split. Equation 3 is a
strictly convex optimization problem, and for some un-
known vectors u ∈ Rnx and v ∈ Rny , the solution has
the form Γ∗ = diag(u)Kdiag(v), with K = exp

(
−Cε

)
,

element-wise. This solution can be obtained efficiently via
Sinkhorn’s algorithm (Peyré et al., 2019).

2.2. Gromov-Wasserstein Optimal Transport

Classic optimal transport requires defining a cost function
to move samples across domains, which can be difficult
to implement for data in different dimensions. Gromov-
Wasserstein distance allows for the comparison of distri-
butions in different metric spaces by comparing pairwise
distances between the samples across these domains. For
this extension, we need to assume we have metric mea-
sure spaces (X , Dx, p) and (Y, Dy, q), where Dx and Dy

are distance matrices on the two datasets with Dx
ij =

dx(xi, xj) and Dy
ij = dy(yi, yj) for some distances dx and

dy (Mémoli, 2011).

Given a cost function L : R × R → R, defined over the
distance matrices, the discrete Gromov-Wasserstein distance
between p and q is defined by

GW (p, q) = min
Γ∈Π(p,q)

∑
i,j,k,l

LijklΓijΓkl, (4)

where L ∈ Rnx×nx×ny×ny is the fourth-order tensor de-
fined by Lijkl = L(Dx

ik, D
y
jl). Intuitively, L(Dx

ik, D
y
jl)

captures how transporting xi onto yj and xk onto yl would
distort the original distances between xi and xk and between
yj and yl. This change ensures that the optimal transport
plan π will preserve some local geometry. For our problem,
we use L(x, y) = (x − y)2. As in the case of classic opti-
mal transport, this problem can be solved efficiently through
entropic regularization (Peyré et al., 2016):

min
Γ∈Π(p,q)

∑
i,j,k,l

LijklΓijΓkl − εH(Γ). (5)

Larger values of ε lead to an easier optimization problem
but also a denser coupling matrix, meaning that more data
points have correspondences with one another. Conversely,
smaller values of ε lead to sparser solutions, meaning that
the coupling matrix is more likely to find the correct one-
to-one correspondences when they exist. However, it also
means a harder (more non-convex) optimization problem
(Alvarez-Melis & Jaakkola, 2018).

2.3. Single-Cell alignment using Optimal Transport
(SCOT)

Our method, SCOT, works as follows. First, we compute the
pairwise distances on our data by using graph distances as in
(Nitzan et al., 2019). To do this, we construct a k−nearest
neighbor graph based on the Euclidean distances within each
data set. Then, we compute the shortest path distance on
the graph between each pair of nodes and set the distance of
any unconnected nodes to be the maximum (finite) distance
in the graph.

Our approach is robust to the choice of k. Since we do
not know the true distribution of the original data sets, we
follow (Alvarez-Melis & Jaakkola, 2018) and set p and q to
be the uniform distributions on the data points. With these
graph distance matrices and marginal distributions, we solve
for the optimal coupling Γ which minimizes Equation 5.

One of the major advantages of this approach is that we
end up with a coupling matrix Γ with a probabilistic in-
terpretation. The entries of the normalized row nxΓi are
the probabilities that the fixed data point xi corresponds
to each yj . However, to use the correspondence metrics
previously used in the field to evaluate the alignment, we
need to project the two datasets into the same space. We use
a barycentric projection:

xi 7→
1

pi

ny∑
j=1

Γijyj . (6)

This barycentric projection of point xi is a weighted average
of the yj’s, where the weight Γij is the probability of corre-
spondence between xi and yj . This projection averages over
all the points, so it has a tendency to center the projected
data onto the mean of the dataset it is being projected on.
Figure 1 presents the schematic of the SCOT algorithm.

3. Experimental Setup
We benchmark our method on three different simulation
schemes (from (Liu et al., 2019)): a bifurcated tree, a Swiss
roll, and a circular frustum. We also align two single-cell
co-assay datasets: (1) sc-GEM (Cheow et al., 2016), which
simultaneously profiles gene expression and DNA methyla-
tion at multiple loci on human somatic cell samples under-
going conversion to induced pluripotent stem cells (iPSCs)
and (2) SNARE-seq (Chen et al., 2019), which links chro-
matin accessibility with gene expression data on a mixture
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Table 2. Running times (in seconds) of SCOT, MMD-MA, and UnionCom (CPU and GPU versions).
Sim. 1 Sim. 2 Sim. 3 scGEM SNAREseq

SCOT 2.33 1.43 3.41 3.17 40.52
MMD-MA 30.06 29.69 28.84 16.12 547.71
UnionCom 525.85 442.19 302.69 143.60 2169.74
UnionCom (GPU) 117.72 112.41 109.73 70.21 345.37

of BJ, H1, K562, GM12878 cells. All these datasets have
1–1 correspondence information, which we use only to eval-
uate the alignments quantitatively. For evaluation, we use
the average “fraction of samples closer than the true match
(FOSCTTM)” metric introduced by Liu et al. (Liu et al.,
2019). For each sample in a domain, this metric calculates
the fraction of samples that are positioned more closely to
it than its true match after alignment. We average it across
all the samples for each dataset and report the average FOS-
CTTM.

We benchmark the performance of SCOT against UnionCom
and MMD-MA. Although none of these methods require
any correspondence information for aligning data, they all
require hyperparameter tuning for optimal alignment. For
all methods, we define a grid of hyperparameters and select
the set that yields the minimal average FOSCTTM. For
SCOT, the grid is defined over the regularization weight
(ε) and the number of neighbors (k) in the k−NN graph.
For MMD-MA, it is defined over the width of the Gaussian
for the initial kernel calculation (σ), the weights for the
terms in the optimization problem (λ1 and λ2), and the
dimensionality of the embedding space (p). For UnionCom,
we tune the number of neighbors in thek−NN graph (k),
the trade-off parameter (β), the regularization coefficient
(ρ) and dimensionality of the embedding space (p). While
not related to the algorithmic formulation, we also tune the
learning rate to achieve a smoother convergence.

4. Results
4.1. SCOT successfully performs alignment

We report the alignment results from SCOT for both the
simulated and real-world datasets, as compared with MMD-
MA and UnionCom, in Table 1. For the simulated datasets,
we observe that SCOT achieves the lowest average FOS-
CTTM metric (averaged over all samples in the datasets)
and demonstrates its ability to recover the correct correspon-
dences in simulations.

Next, we apply our method to real-world single-cell se-
quencing assays and observe that SCOT gives comparable
performance to the baseline methods. For scGEM data, the
best FOSCTTM values are 0.201, 0.217, and 0.2066 for
MMD-MA, UnionCom, and ScOT, respectively. For the
SNARE-seq dataset, MMD-MA yields the best FOSCTTM,

followed by SCOT, with FOSCTTM values of 0.1499 and
0.1985. UnionCom achieves lower performance with a FOS-
CTTM value of 0.265. We note that this dataset consists of
a larger number of cells (1047) compared to scGEM (177).

4.2. SCOT is faster and uses fewer hyperparameters

We compare the running times of SCOT with the baseline
methods for the best performing hyperparameters. We ran
the CPU versions of the algorithms on an Intel i5-8259U
CPU (base frequency 2.30GHz) with 16GB memory. Union-
Com also has a GPU version that we ran on a single NVIDIA
GTX 1080ti with VRAM of 11GB. We observe that SCOT
converges ∼15, ∼50, and ∼10 times faster than MMD-
MA, UnionCom, and UnionCom-GPU, respectively, for the
largest SNARE-Seq dataset (Table 2).

Unlike MMD-MA and UnionCom, which require the tuning
of four parameters, SCOT requires the tuning of only two.
Therefore, it drastically reduces the parameter search space
making the algorithm an even faster tool for unsupervised
single-cell alignment tasks.

5. Discussion
We have demonstrated that SCOT, which uses Gromov
Wasserstein-based optimal transport to perform unsuper-
vised integration of single-cell multi-omics data, performs
well when compared to two state-of-the-art methods but in
less time and with fewer hyperparameters.

To apply an evaluation metric and quantify the quality of
alignment, we need to project the data into the same space.
Here, we choose to use a barycentric projection to project
one domain onto another, but there are various other ways
to use the coupling matrix to infer alignment. For example,
the coupling matrix could also be used with other dimension
reduction methods such as t-SNE (as in UnionCom) to align
the manifolds while embedding them both into new spaces.
Additionally, depending on the application, a projection may
not be required. For some downstream analyses, it may be
sufficient to have probabilities relating the samples to one
another. Our future work will focus on developing effective
ways to utilize the coupling matrix, closely investigating
the cases where SCOT and MMD-MA outperform each
other, and extending our framework to handle more than
two alignments at a time.
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