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Learning a latent representation of human genomics using Avocado
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Abstract
In the past decade, the use of high-throughput
sequencing assays has allowed researchers to ex-
perimentally acquire thousands of functional mea-
surements for each basepair in the human genome.
Despite their value, these measurements are only
a small fraction of the potential experiments that
could be performed while also being too numer-
ous to easily visualize or compute on. In a recent
pair of publications, we address both of these chal-
lenges with a deep neural network tensor factor-
ization method, Avocado, that compresses these
measurements into dense, information-rich rep-
resentations. We demonstrate that these learned
representations can be used to impute with high
accuracy the output of experimental assays that
have not yet been performed and that machine
learning models that leverage these representa-
tions outperform those trained directly on the
functional measurements on a variety of genomics
tasks. The code is publicly available at https:
//github.com/jmschrei/avocado.

The field of genomics is undergoing a surge in the num-
ber of high quality, publicly available data sets. These
data sets include genome-wide measurements of several
types of biochemical activity such as chromatin accessibil-
ity, transcription, protein binding, and histone modification.
Understanding this biochemistry is crucial for explaining
the molecular basis for cellular phenomena, such as aging
and disease. As a result, large collaborative efforts such
as the Roadmap Epigenomics Mapping Consortium (Kun-
daje et al., 2015) and the NIH ENCODE Project (ENCODE
Project Consortium, 2012) have prioritized performing ex-
periments that measure dozens of forms of functional activ-
ity in hundreds of human cell types, primary cell lines, and
tissues (“biosamples”). Today, the ENCODE Compendium
is one of the most comprehensive resources for genomics
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data sets in the world, with over 10,000 data sets available.

Unfortunately, there are two major problems with compen-
dia such as ENCODE’s. First, these compendia are now mas-
sive in size, containing thousands of data sets that require
hundreds of gigabytes to store after processing and compres-
sion. It would be difficult for a researcher to visualize even
a small subset of these data sets at a particular region or
to perform computation on all of them without appropriate
hardware. Second, despite their size, these compendia are
generally incomplete. For example, the ENCODE Com-
pendium has fewer than 1% of the experiments that could
potentially be performed. This sparsity poses difficulties for
computational methods that rely on a common set of func-
tional measurements in each biosample, or for investigators
whose research happens to be on a biosample that has had
very few experiments performed in it.

We address both these challenges with Avocado, a deep
tensor factorization model. Avocado organizes a set of ge-
nomics experiments into a 3D tensor whose axes correspond
to biosample, assay type, and genomic position (Fig 1A).
We refer to the model as “deep” because the dot product
operation in standard factorization methods is replaced with
a deep neural network (Fig 1B). The latent representations
and neural network weights are trained using standard gra-
dient descent methods on the regression task of predicting
values within the tensor.

In a pair of publications, we apply Avocado to the Roadmap
Compendium (Schreiber et al., 2020b) and then to the much
larger ENCODE Compendium (Schreiber et al., 2020a). Our
first main observation was that the learned latent represen-
tations encode complex biology. For example, a projection
of the genome representations revealed a continuum be-
tween annotated enhancers and promoter elements, and a
projection of the biosample representations showed a clus-
tering by anatomy type (Fig 1C). Our second main obser-
vation was that the imputations made from the model were
high quality and more accurate than previous approaches
(Fig 1D). Additionally, we found that Avocado’s imputed
transcription factor binding tracks outperformed the top par-
ticipants in a recent ENCODE-DREAM transcription factor
binding challenge (https://www.synapse.org/#!
Synapse:syn6131484/wiki/402026). Overall, the
imputations completing the ENCODE Compendium cov-
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Figure 1. An overview of the Avocado model. (A) Genomics experiments are organized into a 3D tensor with the axes corresponding to
biosample, assay, and genomic position, and Avocado learns latent representations for these three axes. (B) Avocado uses a neural network
whose input is the concatenation of latent factors and whose output is the corresponding experimental signal. (C) UMAP projections
of the genomic position and cell type representations with points colored by enhancer/promoter identity or anatomy type respectively.
(D) Example experimental signal and imputations for the histone modification H3K27ac and binding of the protein CTCF at the same
positions in the cell type HepG2. GENCODEv29 annotations indicate the locations of genes.

ered 400 human biosamples and 84 assays. This set of >30k
genome-wide imputations represent, to our knowledge, the
largest imputation of genomics experiments that has been
performed to date, and the first time that this many forms of
biochemistry were jointly modeled.

We anticipate that researchers will find Avocado’s latent
representations to be widely useful. For instance, when
used as input in the place of functional measurements, we
found that these representations improved the performance
of machine learning models trained to predict gene expres-
sion, promoter-enhancer interaction, replication timing, and
frequently interacting regions (FIREs). Any model that cur-
rently takes functional measurements as input would likely
benefit from instead using Avocado’s representations. Fur-
ther, the representations can trivially be used to calculate a
similarity between each pair of biosamples or each pair of
genomic positions. These similarities provide a natural way
to identify a functionally diverse set of biosamples that a
new assay should be applied to or a functionally diverse set
of genomic positions that expensive assays, such as tiling
arrays, should profile.

We expect that the main value of the imputations will come
from expanding the utility of existing computational meth-
ods and aiding researchers in hypothesis generation. Com-
putational methods that rely on a common set of assays
can substitute in imputations when experimental data is not
available, allowing them to be comprehensively performed
on all biosamples in the ENCODE Compendium. In cases
where experimental data is available, we have observed
that using the imputations instead can lead to improved
model performance in part becase the imputations serve as

a de-noised version of the experimental data. Additionally,
imputations can be inspected to identify interesting patterns,
such as clusters of biosamples exhibiting unexpected func-
tional activity at a locus, that should be followed-up with
experimental validation.

The code, models, and learned latent representations
can be found at https://github.com/jmschrei/
avocado. The >36k imputed genome-wide data sets
produced during these projects can be found on the EN-
CODE portal https://www.encodeproject.org
and are grouped by publication under the accessions
ENCSR617ILB and ENCSR481OSA.
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