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Abstract

In this paper, we propose a data-driven segmentation
approach for dividing biological sequences into
frequent variable-length sub-sequences inspired
by Byte-Pair Encoding (BPE) text compression
algorithm. In contrast to the recent use of BPE in
natural language processing for vocabulary size
reduction, we used this idea to increase the size of
symbols in the biological sequences replacing the
k-mer representations. We investigate the use of this
segmentation in 16S rRNA gene processing (Asgari
et al., 2019b) and show that this representation can
improve the performance of biomarker detection
in 16S rRNA processing. Furthermore, we extend
the BPE to perform a probabilistic segmentation of
protein sequences and show that it can be used for
the task of motif discovery and protein sequence
embedding (Asgari et al., 2019a).

1. Introduction
Bioinformatics and natural language processing (NLP) are
research areas that have greatly benefited from each other since
their beginnings and there have been always methodological
exchanges between them. Levenshtein distance (Levenshtein,
1966) and Smith–Waterman (Waterman et al., 1976) algorithms
for calculating string or sequence distances, the use of formal
languages for expressing biological sequences (Searls, 1993;
2002), training language model-based embeddings for biological
sequences (Asgari & Mofrad, 2015), and using state-of-the-art
neural named entity recognition architecture (Lample et al.,
2016) for secondary structure prediction (Johansen et al., 2017;
Asgari et al., 2019c) are some instances of such influences.
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Similar to the complex syntax and semantic structures of natural
languages, certain biophysical and biochemical grammars
dictate the formation of biological sequences. This assumption
has motivated a line of research in bioinformatics to develop
and adopt language processing methods to gain a deeper
understanding of how functions and information are encoded
within biological sequences (Yandell & Majoros, 2002; Searls,
2002; Asgari & Mofrad, 2015; Asgari, 2019). However, one of
the apparent differences between biological sequences and
many natural languages is that biological sequences (DNA,
RNA, and proteins) often do not contain clear segmentation
boundaries, unlike the existence of tokenizable words in many
natural languages (Adel et al., 2017). This uncertainty in the
segmentation of sequences has made overlapping k-mers one of
the most popular representations in machine learning for all
areas of bioinformatics research, including proteomics (Grabherr
et al., 2011; Asgari & Mofrad, 2015), genomics (Jolma et al.,
2013; Alipanahi et al., 2015), epigenomics (Awazu, 2016;
Giancarlo et al., 2015), and metagenomics (Wood & Salzberg,
2014; Asgari et al., 2018). However, it is unrealistic to assume
that fixed-length k-mers are units of biological sequences and
that more meaningful units need to be introduced. This means
that although choosing a fixed k value for sequence k-mers
simplifies the problem of segmentation, it is an unrealistic
assumption to assume that all important part of the sequences
have the same length and we need to relax this assumption.

Although in some sequence-labeling tasks (e.g. secondary
structure prediction or binding site prediction) sequences are
implicitly divided into variable-length segments as the final
output, methods to segment sequences into variable-length
meaningful units as inputs of downstream machine learning
tasks are needed. Here, we propose a segmentation approach for
dividing biological sequences into frequent variable-length
sub-sequences inspired by byte pair encoding (BPE) algorithm,
which is a text compression algorithm introduced in 1994 (Gage,
1994) that has been also used for compressed pattern matching
in genomics (Chen et al., 2004) as well. Recently, BPE became
a popular word segmentation method in machine translation
in NLP for vocabulary size reduction, which also allows for
open-vocabulary neural machine translation (Sennrich et al.,
2016). In contrast to the use of BPE in NLP for vocabulary size
reduction, we used this idea to increase the size of symbols
from 4 nucleotides (in DNA and RNA sequences) or 20 amino
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acids (in protein sequences) or to a large set of variable-length
frequent sub-sequences, which are potentially meaningful
in bioinformatics tasks. In the present article, we introduce
applications of this data-driven segmentation (i) in metagenomics
for an accurate biomarker detection from 16S rRNA gene
sequences, and (ii) in proteomics for discriminative motif
discovery and variable-length embedding of protein sequences.

2. Nucleotide-pair encoding (NPE) for 16S
rRNA gene processing

Identifying distinctive taxa for microbiome-related diseases is
considered key to the establishment of diagnosis and therapy
options in precision medicine and imposes high demands on the
accuracy of microbiome analysis techniques. We propose an
alignment- and reference- free subsequence based 16S rRNA
data analysis, as a new paradigm for microbiome phenotype and
biomarker detection. Our method, called DiTaxa, substitutes
standard OTU-clustering by segmenting 16S rRNA reads
into the most frequent variable-length subsequences called
Nucleotide-pair encoding (NPE). We compared the performance
of DiTaxa to the state-of-the-art methods in phenotype and
biomarker detection, using human-associated 16S rRNA samples
for periodontal disease, rheumatoid arthritis, and inflammatory
bowel diseases, as well as a synthetic benchmark dataset. DiTaxa
performed competitively to the k-mer based state-of-the-art
approach in phenotype prediction while outperforming the
OTU-based state-of-the-art approach in finding biomarkers
in both resolution and coverage evaluated over known links
from literature and synthetic benchmark datasets (Asgari et al.,
2019b). The overview of DiTaxa pipeline and a sample result on
periodontal disease is shown in Figure 1.

3. Peptide-pair encoding (PPE) for protein
sequence processing

We present peptide-pair encoding (PPE), a general-purpose
probabilistic segmentation of protein sequences into commonly
occurring variable-length sub-sequences. We modify the BPE
text compression algorithm by adding a sampling framework
allowing for multiple ways of segmenting a sequence. PPE
segmentation steps can be learned over a large set of protein
sequences (Swiss-Prot) or even a domain-specific dataset and
then applied to a set of unseen sequences. This representation
can be widely used as the input to any downstream machine
learning tasks in protein bioinformatics. In particular, here, we
introduce this representation through protein motif discovery and
protein sequence embedding. (i) DiMotif: we present DiMotif
as an alignment-free discriminative motif discovery method
and evaluate the method for finding protein motifs in three
different settings: (1) comparison of DiMotif with two existing
approaches on 20 distinct motif discovery problems which are
experimentally verified, (2) classification-based approach for the
motifs extracted for integrins, integrin-binding proteins, and
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Figure 1. (a) Computational workflow of DiTaxa, DiTaxa has three
main components: (i) NPE representation, (ii) Phenotype prediction,
(ii) Biomarker detection and taxonomic analysis. The purple boxes
denote the outputs of the approach. (b) Sample output: Taxonomy
of differently expressed markers for samples from patients with
periodontal disease versus healthy subjects: comparison of DiTaxa and
standard pipeline (STDP).

biofilm formation, and (3) in sequence pattern searching for
nuclear localization signal. The DiMotif, in general, obtained
high recall scores, while having a comparable F1 score with
other methods in the discovery of experimentally verified motifs.
Having high recall suggests that the DiMotif can be used for
short-list creation for further experimental investigations on
motifs. In the classification-based evaluation, the extracted
motifs could reliably detect the integrins, integrin-binding, and
biofilm formation-related proteins on a reserved set of sequences
with high F1 scores. (ii) ProtVecX: we extend k-mer based
protein vector (ProtVec) embedding to variable-length protein
embedding using PPE sub-sequences. We show that the new
method of embedding can marginally outperform ProtVec in
enzyme prediction as well as toxin prediction tasks. In addition,
we conclude that the embeddings are beneficial in protein
classification tasks when they are combined with raw k-mer
frequency features (Asgari et al., 2019a).
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