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Abstract
This work introduces a geometric framework and
a novel network architecture for creating corre-
spondences between samples of different condi-
tions. Under this formalism, the latent space is a
fiber bundle stratified into a base space encoding
conditions, and a fiber space encoding the vari-
ations within conditions. The correspondences
between conditions are obtained by minimizing
an energy functional, resulting in diffeomorphism
flows between fibers. We illustrate this approach
using MNIST and apply it to the batch-correction
of single cell RNA sequencing datasets.

1. Introduction
Single cell RNA-seq (scRNA-seq) sequencing measures the
gene expression of each cell individually. The result is a
matrix where each cell is represented by a vector of gene
expressions. However, differences in sample handling and
technical platforms leave strong imprints that uniquely mark
each batch and overshadow the biology. These imprints
are commonly referred to as batch effects. The process
of batch correction refers to the integration of batches to-
gether while preserving relevant biological signal, such as
cell types that can be inferred through the expression of
distinct gene modules. Several methods have been recently
proposed for correcting batch effects (Tran et al., 2020),
and some of the most effective methods use deep neural
networks (Lotfollahi et al., 2019; Lopez et al., 2018). In
the context of batch correction, datasets are naturally strati-
fied into two spaces, the batch (or condition) space and the
gene expression space. Theoretically, these two spaces are
considered independent, as the biological signal should be
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Figure 1.1. Conceptual sketch of the proposed method. We stratify
the learned latent space M into a base space B and a fiber space
F . Under this representation, samples can be formally transported
from Fa to Fb, and geodesic interpolations between latent spaces
Fa and Fb can be generated.

independent from technical artifacts. It naturally follows
that an effective latent representation for a batch correcting
model should enforce the disentanglement of the batch and
biological signal.

However, most neural networks methods proposed for batch
correction fail to consider or neglect this disentanglement
(Lotfollahi et al., 2019; Lopez et al., 2018; Amodio et al.,
2019). For example, the distribution of a variable x stratified
by a condition c is often modelled using latent variables z
as p(x|z, c) without any considerations for the dependen-
cies between z and c. Unlike β-VAE frameworks (Kimmel,
2020; Higgins et al., 2016), our disentanglement is geo-
metrically built in the formalism and reflects supervised
labeling.

Indeed, in this work, we propose a geometric formalism that
explicitly stratifies the latent space M . Here, M is taken as
a Riemannian fiber bundle M ⊂ RdimM , stratified into a
base space B, encoding batch (or conditions), and a fiber
space F , encoding variations within conditions (biological
signal). Within this formalism samples are encoded using
two coordinates (f, b) ∈ B × F (see Fig. 1.1).
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Figure 2.1. Illustration of geodesic transport with curve γ from the
fiber F1 to F2.

More importantly, this formalism allows us to compute
correspondences between conditions using a natural Rie-
mannian structure on M . This allow us to reframe the batch
correction problem to the problem of translating samples
between two conditions. We achieve this by finding the
geodesics (shortest paths) in M linking their corresponding
fibers . We achieve this by minimizing an energy functional,
which allow us to calculate diffeomorphism flows between
fibers.

2. Fibered Auto-Encoders
Our goal is to construct the shortest curves between fibers in
M . This is illustrated in Fig. 2.1.We assume the existence
of a generating process

Ψθ : M → (X , ‖ · ‖2) . (2.1)

A Fibered Auto-encoder (FAE) is essentially a standard
auto-encoder whose latent space is stratified into base space
B and a fiber space F . However, to enforce the disentan-
glement between B and F and to improve the quality of
generated samples, we have added auxiliary objectives to
the reconstruction loss: (i) to enforce the disentanglement
between base and fiber spaces, (ii) to improve the quality
of the reconstructions. The entire architecture can be seen
in Fig. 2.2, the theoretical treatment as well as training and
implementation are detailed in the full paper (Daouda et al.,
2020).

3. Results
3.1. MNIST

Throughout this section we contrast naive transport between
two fibers (using the identity map to transport from Fa to
Fb), with geodesic transport (finding the shortest path on
M linking Fa to Fb). We first illustrate our method on the
MNIST dataset. Here, the possible conditions are the digits
{0, 1, . . . , 9}, the base is B = R2 and the standard fiber is

F = [−1, 1]2. Fig. 3.1 shows manifold plots obtained from
an evenly spaced grid on F4 and F9. We can see that the
reconstructions are of high quality and show a high diversity
of samples despite the small bottleneck size (2 units). We
also see that the learned latent space is contiguous as any
coordinate f ∈ [−1, 1]2 yields a realistic digit. Finally, Fig.
3.1 shows that the learned space has an intrinsic organisa-
tion, as gradually moving on fibers gradually changes digit
features. Manifolds for F4 and F9 exhibit similar structures,
with points at the same coordinate having similar inclination
and boldness. This shows that naive transport is capable of
creating rather accurate correspondences between fibers of
similar conditions. We do not give the manifold plot after
geodesic transport as the difference with naive transport
are barely perceivable. Fig. 3.3 gives an estimation of the
diffeomorphism between fibers F4 and F9. The starting
points in F4 are the orange dots obtained using an evenly
spaced grid. The blue dots are the endpoints in F9 for the
calculated geodesics. The diffeomorphism induced through
geodesic transport is globally close to the identity. This
shows that naive transport can give a good approximation.
However, the correction applied by geodesic transport is
more apparent as we get closer to the edges.

Figure 3.1. Manifold plots for the fibers F4 and F9 in MNIST.
Images were generated using an evenly spaced grid in the standard
fiber space F = [−1, 1]2.

3.2. Batch-correcting scRNA-seq datasets

We use FAEs to represent batches as separate conditions,
we then correct the batch effect by transporting all cells
to a single reference batch. We benchmark our methods
against the current state of the art in batch correction: Har-
mony (Korsunsky et al., 2019), and two neural networks
developed to handle and batch correct scRNA-seq data: sc-
Gen (Lotfollahi et al., 2019) and SAUCIE (Amodio et al.,
2019). As Harmony runs on principal components, we ran
our benchmarks on PCA reduced data by using the first 20
principal components, in line with the methodology of (Tran
et al., 2020).

We quantify batch correction quality using the prediction
accuracies of three classifiers and the batch correction met-



Geometry in fibered latent spaces

Network, Parameters Modules

Loss Optimizers

Input / output

X =Data in X

c = 2Condition

Encoder Φ1, θe f ∈ F

Embeddings Φ2, θm b ∈ B

Classifier with GRL Υ, θac
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Figure 2.2. Network architecture. The general architecture is that of an auto-encoder receiving couples of samples and conditions (X, c)

and outputting a reconstruction X̂ . The latent space is stratified into the fiber coordinate f (output of the bottleneck layer), and the base
coordinate b encoding conditions. To the auto-encoder architecture we have added the classifier Υ coupled with a GRL (Gradient Reversal
Layer (Ganin & Lempitsky, 2014)) to disentangle f from b, the GAN discriminator ∆ to ensure reconstruction realism, and the condition
classifier Υ to prevent mode collapses.

ric LISI (Korsunsky et al., 2019). Finally, we use Ward’s
variance decomposition to quantify how much changes in
variance can be attributed to variations within groups, as op-
posed to in-between groups (Daouda et al., 2020) (Saporta,
2006)[p.258]. We benchmark all methods on two datasets.
The first contains two batches of Peripheral Blood Mononu-
clear Cells (i.e., PBMCs): unstimulated and stimulated (with
INF-b1) (Kang et al., 2018). The second is a compilation
of 4 published pancreatic datasets generated by different
groups using 4 distinct single-cell RNA sequencing experi-
mental approaches.

A successful correction removes batch imprint and con-
serves cells biological identity. Therefore we report in Fig.
3.2 the accuracy on predicting the batch (i.e., lower is better)
and the accuracy on predicting the cell type (i.e., higher is
better). All methods performed well when it comes to re-
moving the batch signal. Despite using a bottle-neck about
10 times lower 2, our transport method shows results close to
to scGen (Lotfollahi et al., 2019). SAUCIE over-corrected
the batch effect at the expense cell type identity. Compared
to naive, geodesic transport increases both cell type and
batch predictability. For the LISI scores, once again, naive
and geodesic transport show results on par with scGen.

Ward’s variance decomposition in Fig. 3.2, shows that trans-
port is the only method capable of retaining a significant
part of the original variance of the uncorrected dataset. This
suggests that our method retains more of the biological
signal. On the PBMC datasets, we observe increases in vari-
ance within batches and between cell types. Such increases

1Interferon-beta
2We used 10 for pancreas and 16 for PBMC vs 100 for scGen.

could be due to the network imputing values for missing
genes: due to single-cell experimental technical issues, gene
expression matrices are very sparse (over 80% to 90%).

Fig. 3.4 3.5 shows UMAP plots (McInnes et al., 2018) for
uncorrected data, transport and scGen. After correction,
batches overlap and cells cluster by cell type. In contrast to
scGen, transport kept cell types together, CD16 monocytes
(purple) and CD16 monocytes (red), close to each other as in
the original uncorrected dataset (see fig. 3.4). This suggest
that FAEs are better at conserving relevant structures from
datasets, and echoes variance decomposition results (Fig.
3.2). Finally, Fig. 3.5 shows that FAEs are able to integrate
batches containing small numbers of cells.

Figure 3.3. Diffeomorphism between F4 and F9. The orange dots
represent the original coordinates in F4, the blue dots are their
corresponding images in F9 computed through geodesic transport.
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Figure 3.2. Left: Accuracies for uncorrected and batch correction methods on both dataset. Batch accuracy (lower is better) and, cell type
accuracy (higher is better) are reported for random forest (rf), support vector classifier (svc) and logistic regression (logreg). Middle: LISI
scores for uncorrected and batch correction methods on both datasets. LISI on cell type (closer to 1 is better), LISI on batch (higher is
better). Error bars display the standard deviation. Right: Total variance and Ward’s variance decomposition, for uncorrected data and
batch correction methods. Total variance has been normalized to 1, on the uncorrected dataset.

Figure 3.4. UMAP visualization of PBMC cells. Left column:
cells colored by batch, Right: colored by cell types. From top to
bottom: uncorrected data, scGen, geodesic transport (the plot of
naive transport is very close to the naked eye). Transport conserves
cell types relationships by keeping purple cells (i.e., CD16 mono-
cytes) close to red cells (i.e., CD14 monocytes), which are related
to each other.

Figure 3.5. UMAP visualization of pancreas cells. Left column:
cells colored by batch, right: colored by cell types. From top
to bottom: uncorrected data, scGen (bottleneck size: 100), naive
transport (bottleneck size: 16). Contrary to scGen, naive transport
was able to integrate cells form the red batch despite the small sam-
ple size. This suggests that FAE are better at integrating datasets
of small sample sizes
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4. Conclusion
We proposed FAEs, a general learning framework capable of
independently representing batch and biological signal and
used FAEs to successfully correct batch effects in scRNA-
seq. Here, We restricted ourselves to cases where conditions
are of similar nature (e.g. datasets containing the same cell
types). Consequently, naive and geodesic transport yield
similar results. One could argue that this proximity morally
measures similarity between conditions. Future work could
explore applications to more dissimilar conditions as well as
different layer types and loss functions. Finally, geodesics
computation becomes more challenging as latent space size
increases. This technical issue is mitigated by the fact that
FAEs can learn accurate representations in very small latent
spaces. Addressing it would be a natural follow-up.
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