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Abstract
Technological advances enabled the collection of
large epigenetic datasets, including information
about various DNA binding proteins and DNA
spatial structure. Hi-C experiments have revealed
that chromosomes are subdivided into sets of self-
interacting domains called Topologically Asso-
ciating Domains (TADs). TADs are involved in
the regulation of gene expression activity, but the
mechanisms of their formation are not yet fully
understood. In mammals, the genome is folded
through the concerted function of architectural
proteins cohesin and CTCF. Drosophila, by con-
trast, lacks CTCF-mediated domain formation.
Instead, Drosophila TADs appear to be correlated
with epigenetic features, such as histone modi-
fications. Here, we focus on Machine Learning
methods to characterize DNA folding patterns in
Drosophila across three cell lines. We present Lin-
ear Regression models with four types of regular-
ization, Gradient Boosting, and Recurrent Neural
Networks (RNN) to learn chromatin folding char-
acteristics associated with TADs using epigenetic
ChIP-Seq data. Our Bidirectional Long Short-
Term Memory RNN architecture gained the best
prediction scores and has highlighted biologically
relevant features. Chriz and H3K4me3 were se-
lected as the most informative features for the pre-
diction of TADs characteristics. The implemented
pipeline is called Hi-ChIP-ML, and the code is
publicly available. This approach may be adapted
to any similar biological dataset of chromatin
features across various cell lines and species.
Code: https://github.com/MichalRozenwald/Hi-
ChIP-ML
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1. Introduction
Investigating the DNA-protein complex of eukaryotic cells
called chromatin is a challenging task today. Multiple in-
terconnections of chromatin structure with gene regulation,
inheritance, and disease have been observed (Lupiáñez et al.,
2016). Various cell regulation mechanisms act through
the three-dimensional (3D) structure of chromatin. High-
throughput experiments capturing contacting fragments of
the genome, such as Hi-C, have unraveled many principles
of chromosomal folding (Lieberman-Aiden et al., 2009).
Hi-C maps have demonstrated that chromosomes are subdi-
vided into sets of self-interacting domains called Topolog-
ically Associating Domains (TADs) (Ulianov et al., 2016).
TADs influence regulatory landscapes within chromosomes
at multiple scales and organisms (Szabo et al., 2019). For
example, TADs correlate with units of replication timing reg-
ulation in mammals (Pope et al., 2014) and with epigenetic
domains in Drosophila (Sexton et al., 2012). Moreover, Hi-
C maps have the potential for various practical and medical
applications. For instance, disruption of the chromosomal
topology has been reported to affect gliomagenesis and limb
malformations in humans (Krijger & De Laat, 2016).

Several studies focused on predicting 3D chromatin architec-
ture using Machine Learning. For example, Cristescu et al.
have presented the REcurrent Autoencoders for CHromatin
3D structure prediction (REACH-3D) which reconstructs
the chromatin structure and creates an embedding represen-
tation (Cristescu et al., 2018). Shashank et al. have con-
structed a Deep Learning model called SPEID that predicts
enhancer-promoter interactions using only sequence-based
features (Singh et al., 2019). As partitioning of the genome
into TADs is still not fully understood, it provides a unique
opportunity to build accurate and interpretable Machine
Learning models.

The relationship between TADs and epigenetic marks has
been previously investigated using high-throughput ChIP-
seq data that localize protein binding sites and histone mod-
ifications to DNA in vivo (Bushey et al., 2009). Ulianov
et al. demonstrated that in Drosophila, active transcrip-
tion plays a key role in the chromosome partitioning into
TADs (Ulianov et al., 2016). The authors suggested that
nucleosomes tending to interact less often influence the
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formation of inter-TADs and TAD boundaries. Active chro-
matin marks are preferably present at TAD borders, while
repressive histone modifications are depleted in inter-TADs,
which reveals the correlation between TADs and chromatin
marks.

Our research focuses on understanding the 3D chromatin
structure using epigenetic data and Machine Learning tech-
niques. To that end, we analyzed Drosophila melanogaster
chromatin structure via Linear Regression models, Gradient
Boosting Regressors, and Recurrent Neural Networks. The
models were trained to predict TAD patterns using ChIP-seq
data, and informative epigenetic marks are presented bellow.

2. Methods
Input Data Hi-C datasets for three cultured Drosophila
melanogaster were collected from Ulyanov et al. (Ulianov
et al., 2016). Cell lines Schneider-2 (S2) and Kc167
from late embryos and DmBG3-c2 (BG3) from the cen-
tral nervous system of third-instar larvae were analysed.
Drosophila dm3 genome assembly was divided into 5950
sequential genomic regions called bins, where each bin
corresponded to 20 000 DNA base pairs. Each bin was
described by the density of epigenetic features, estimated by
ChIP-seq, downloaded from the modENCODE database
(Celniker et al., 2009). We selected ChIP-seq features
corresponding to epigenetic marks, i.e., transcription fac-
tors, insulator protein binding sites, and histone modifica-
tions (Chriz, CTCF, Su(Hw), H3K27me3, H3K27ac and
additionally RNA-polymerase-II, BEAF-32, GAF, CP190,
H3K4me1, H3K4me2, H3K4me3, H3K9me2, H3K9me3,
H3K27me1, H3K36me1, H3K36me3, H4K16ac), which
had been reported as relevant for TAD formation in previous
studies(Chepelev et al., 2012; Wang et al., 2014).

Target Value Topologically Associating Domains annota-
tion software Armatus (Filippova et al., 2014) has a scaling
parameter gamma, which determines the average size of
TADs. When gamma is fixed, each genomic bin is anno-
tated as a part of a TAD, inter-TAD, or TAD boundary.
Higher gamma corresponds to smaller TADs sizes on av-
erage. We characterized each bin by the scaling parameter
called transitional gamma at which this bin switches from
being a part of a TAD to being a part of an inter-TAD or a
TAD boundary. An illustration of TADs annotation is shown
in Figure 1.

Loss Function The target is a continuous variable ranging
from 0 to 10 with an unbalanced distribution. Most of the
values lie in the interval between 0 and 3. Moreover, the
biological nature of bins with maximal transitional gamma
is different from the other, since transitional gamma 10
means that the bin never transforms from being a part of a

Figure 1. Annotation of TADs at different gamma parameter values
is on the left side. The histogram of the target value transitional
gamma is presented in the right part of this plot.

TAD to an inter-TAD or TAD boundary.

Hence we have introduced a custom loss function named
modified weighted Mean Square Error (wMSE):

wMSE =
1

n

n∑
i=1

(ytruei
− ypredi

)2
α− ytruei

α
,

where n is the number of data points,
ytruei

is the true value for data point number i,
ypredi

is the predicted value for data point number i,
α is the maximum value of ytrue increased by 1.

Models To explore the relationships between the 3D chro-
matin structure and epigenetic data, we built Linear Re-
gression (LR) models, Gradient Boosting (GB) Regressors,
and Recurrent Neural Networks (RNN). The Linear models,
Gradient Boosting, and Constant Predictions using the mean
value of the training dataset were implemented as bench-
marks as no other ML pipelines for these datasets have been
publicly available yet.

Due to the linear connectivity of our input, bins are sequen-
tially ordered in the genome, and the target variable values
are expected to be highly correlated. In addition, the in-
formation content of the double-stranded DNA molecule is
equivalent if reading in the forward and reverse directions.
To utilize the DNA linearity together with independence on
the direction, we selected the Bidirectional Long Short-Term
Memory (LSTM) Recurrent Neural Networks architecture
(Schuster & Paliwal, 1997). Our model takes as input a
sequence of bins and outputs the target value of the middle
bin. The middle bin is an object from the input set with an
index i, where i equals to the floor division of the input set
length by 2. Thus the model uses the characteristics of the
surrounding bins while predicting the transitional gamma
of the middle bin.

To explore the importance of each feature from the input
space, we trained the RNNs using only one of the ChIP-seq
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features as input. We have also trained models in which
columns from the feature matrix were one by one knocked
down. Further, we calculated the evaluation metrics and
checked if they were significantly different from the results
obtained while using the complete set of data. The dataset
was randomly split into three groups: train dataset 70%, test
dataset 20%, and 10% data for validation.

3. Results
The mean values of the weighted Mean Square Errors for
cross-validation of ten experiments for all models and cell
lines are presented in Table 1. The best Linear Regression
score using L1 and L2 regularization was obtained with al-
pha equal to 0.2. Gradient Boosting Trees were trained with
variable parameters such as the number of estimators, learn-
ing rate, maximum depth of the individual regression esti-
mators. The parameters of the best Gradient Boosting Trees
were ’n estimators’: 250, ’max depth’: 4 ’learning rate’:
0.01.

Experiments on the datasets of five ChIP-seq characteristics
have shown stable Linear Regression weight coefficients.
We have obtained features prioritization where the most
valuable feature was Chriz, while the weights of Su(Hw) and
CTCF were the smallest. Chriz, H3K4me1, and H3K27me1
were the most robust influential factors using all the ChIP-
seq features together. In addition, Chriz was selected as
the only most influencing feature by the Linear Regression
model with L1 regularization across datasets.

Figure 2. Weighted Mean Square Error of the Bidirectional LSTM.
The upper row of graphs outlines the results for the S2 train dataset.
The bottom row shows wMSE counted on the S2 test objects.
The left half shows the results of training RNN with 64 units for
different sizes of sequence length. The right half shows wMSE
for training RNNs with an input sequence of 6 bins for a different
number of LSTM Units. The green box highlights the best scores.

To explore the weighted Mean Square Error on various input
sequence length, we trained Bidirectional RNN models with
different input window sizes and numbers of LSTM Units.

The result is shown in Figure 2, where the optimal sequence
length is equal to the input window size 6 and 64 LSTM
Units. This result has a clear biological interpretation as the
typical size of TADs in Drosophila melanogaster is known
to be around 120 Kb, which corresponds to 6 bins of 20,000,
providing the best prediction scores.

Figure 3. Weighted MSE using one ChIP-Seq feature for each bin
of S2 c.l. in the biLSTM RNN. The first mark (’all’) corresponds
to scores of NNs using the features together, the last mark (’const’)
represents wMSE using constant prediction.

The Bidirectional Long Short-Term Memory Recurrent Neu-
ral Networks with 64 LSTM Units and sequences of 6 bins
taken as input data scored better than all other models. The
BiLSTM Recurrent Neural Networks that we explored were
able to capture and utilize the sequential relationship of the
input objects in terms of the physical distance in the DNA.

4. Discussion
The ejection of the chromodomain protein called Chriz (Eg-
gert et al., 2004) strongly influenced the prediction scores.
Similarly, the RNNs that used Chriz as input produced bet-
ter wMSE scores (Figures 3 and 4), and all Linear models
assigned the highest regression weight to the Chriz input
signal. This protein is known to be specific for the inter-
bands of Drosophila melanogaster chromosomes (Chepelev
et al., 2012). Ulianov et al. demonstrated strong enrichment
of Chriz at TAD boundaries and inter-TAD regions (Ulianov
et al., 2016). Additionally, in (Hug et al., 2017; Ramı́rez
et al., 2018; Sexton et al., 2012), the insulator proteins Chriz
and BEAF-32 were enriched at boundaries. This explains
why the third rank of the predictability score was achieved
by BEAF-32.

The application of the Recurrent Neural Networks using
each of the described ChIP-seq features separately has re-
vealed a strong predictive power of active histone mod-
ifications such as dimethylation of histone H3 lysine 4
(H3K4me2). This result aligns with the fact that H3K4me2
was previously shown to strongly define the transcription
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Table 1. Weighted MSE on cross-validation of all methods for each cell line and while using them together.

METHOD SCHNEIDER-2 KC167 DMBG3-C2 ALL

CONSTANT PREDICTION 1.62 ± 0.09 1.53 ± 0.06 1.36 ± 0.05 1.51 ± 0.04
LINEAR REGRESSION 1.14 ± 0.08 1.01 ± 0.06 0.91 ± 0.08 1.04 ± 0.04
LINEAR REGRESSION + L1 1.12 ± 0.07 1.04 ± 0.06 0.95 ± 0.07 1.05 ± 0.04
LINEAR REGRESSION + L2 1.12 ± 0.07 1.01 ± 0.06 0.9 ± 0.08 1.03 ± 0.04
LINEAR REGRESSION + L1 + L2 1.11 ± 0.07 1.02 ± 0.06 0.91 ± 0.07 1.03 ± 0.04
GRADIENT BOOSTING 1.07 ± 0.06 0.98 ± 0.07 0.86 ± 0.08 0.96 ± 0.04
BILSTM 64 UNITS & 6 BINS 0.86 ± 0.04 0.83 ± 0.04 0.73 ± 0.01 0.78 ± 0.01

factor binding regions in different cells (Wang et al., 2014).
Histone modifications H3K4me3, H3K27ac, H3K4me1,
H3K4me3, H4K16ac, and other active chromatin marks
are also enriched in inter-TADs and at TAD boundaries. In
addition, HMs have been used to distinguish various ge-
nomic regions. For instance, H3K27ac, and H3K4me1 were
selected to identify if an enhancer is poised or active (Barski
et al., 2007; Creyghton et al., 2010; Rada-Iglesias et al.,
2011).

As for the models’ performance using Su(Hw) and CTCF,
the outcome is in line with published research (Ulianov
et al., 2016). Ulianov et al. found that for prediction of
TAD boundaries, the binding of insulator proteins Su(Hw)
and CTCF performed much worse than the active chro-
matin marks. In Drosophila, the absence of strong enrich-
ment of CTCF at TAD boundaries and preferential loca-
tion of Su(Hw) in TADs implies that CTCF- and Su(Hw)-
dependent insulators are not the major determinants of TAD
boundaries. In agreement with the previous knowledge, our
results demonstrate that the impact of Su(Hw) and CTCF is
low for both insulator proteins.

Figure 4. Weighted MSE on the S2 test dataset using each ChIP-
Seq either as a single feature (blue line) or ejecting it from the
biLSTM RNN input (yellow line).

5. Conclusion
In this work, Recurrent Neural Networks, Gradient Boosting
Trees, and Linear Regression models were applied for the
prediction of chromatin folding patterns using epigenetic

data in Drosophila melanogaster across three cell lines. Ex-
plicit accounting for the linearly ordered bins in the DNA
molecule improved the prediction significantly, as the best
results were obtained by the Bidirectional LSTM RNN. Fur-
thermore, the optimal length of the input sequence was equal
to six, which is biologically meaningful as it corresponds to
the average TAD size in Drosophila.

Feature importance analysis of the input ChIP-seq data was
conducted and provided prioritization that aligned with the
existing chromatin research. All models selected Chriz sig-
nal as one of the most influencing and histone modification
H3K4me2 was shown to increase the wMSE score of the
prediction strongly.

Exploration of models transferability between a broad set of
cell types might be an interesting development direction for
this research, as well as the integration of various biologi-
cal features, such as raw DNA sequence, to the presented
models.

The implemented pipeline called Hi-ChIP-ML is open-
source. The methods can be used to explore the 3D chro-
matin structure of various species and may be easily adapted
to any similar biological dataset. The code is freely avail-
able at:
https://github.com/MichalRozenwald/Hi-ChIP-ML
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