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Abstract

Functional magnetic resonance imaging (fMRI)
is a crucial technology for gaining insights into
cognitive processes in humans. Data amassed
from fMRI measurements result in volumetric
data sets that vary over time. However, analysing
such data presents a challenge due to the large
degree of noise, and person-to-person variation in
how information is represented in the brain. To
address this challenge, we present a novel topo-
logical approach that encodes each time point
in an fMRI data set as a persistence diagram of
topological features, i.e. high-dimensional voids
present in the data. This representation naturally
does not rely on voxel-by-voxel correspondence
and is robust towards noise. We show that these
time-varying persistence diagrams can be clus-
tered to find meaningful groupings between par-
ticipants, and that they are also useful in studying
within-subject brain state trajectories as each sub-
ject is performing a task, for example. Here, we
apply both clustering and trajectory analysis tech-
niques to a group of participants watching the
movie ‘Partly Cloudy’. We note that there are
marked differences in both brain state trajectories
and overall topological features between adults
and children watching the same movie.
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1. Introduction
Human cognitive processes are commonly studied using
functional magnetic resonance imaging (fMRI), amassing
highly complex, well-structured, and time-varying data sets
across multiple individual subjects. The ultimate goal of ex-
tracting higher-level abstractions from such data is primarily
impeded by two factors: (i) the measurements are inherently
noisy, due to changes in machine calibration, spurious pa-
tient movements, and environmental conditions, (ii) there is
a high degree of variability even between otherwise healthy
brains (e.g. in terms of the representation of stimulus and
activity in the brain).

While these factors can be mitigated by certain experimen-
tal protocols and preprocessing decisions, they cannot be
eliminated. This demonstrates the need for using representa-
tions that are to some extent robust with respect to noise and
invariant with respect to isometric transformations in order
to better capture cognitively-relevant fMRI activity, particu-
larly across populations where anatomy-function relations
may differ. In this paper, we present a novel topological
approach that can study time-varying fMRI data in the form
of cubical complexes. Our approach is coordinate-free, thus
inherently providing a stable representation of high-level
brain activity. We note that this approach is inherently dif-
ferent from many approaches for fMRI data in that it does
not require the creation of a correlation graph, and operates
on the raw activations themselves.

2. Related work
Cubical complexes—our main data structure for modelling
an fMRI data set—and their homology are already well-
studied in algebraic topology, but their use in real-world
applications was primarily limited to image segmenta-
tion (Allili et al., 2001) for a long time. This changed
with the rise of persistent homology, which also gave rise
to research that extends this concept to the cubical setting,
either directly (Strömbom, 2007; Wagner et al., 2012) or
indirectly (Nanda, 2012), such that the properties of ‘cubical
persistent homology’ are well-studied (Dłotko & Wanner,
2018; Mrozek & Wanner, 2010; Wang & Wei, 2016). More-
over, there is some previous work fusing fMRI analysis and
topological data analysis, but it is either based on auxiliary
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topological representations (Saggar et al., 2018), such as the
MAPPER algorithm (Singh et al., 2007), or it makes use of
functional connectivity information, requiring the extraction
of regions of interest (Anderson et al., 2018). By contrast,
our method operates directly on fMRI volumes, requiring
neither additional location information nor the construction
of auxiliary representations (our method benefits from using
whole-brain masks, yet they are not a prerequisite for the
analyses described in this paper).

3. Background
Topological data analysis (TDA) recently started gaining
traction, in particular in the context of machine learning;
see Hofer et al. (2017) or Rieck et al. (2019) for two recent
examples1. TDA is a rapidly-growing field that provides
tools for analysing the shape of data sets. It is deeply rooted
within algebraic topology and uses numerous of its con-
cepts. This section provides a brief introduction, we refer
the reader to Edelsbrunner & Harer (2010) for details. To
our knowledge, this is the first time that such a direct topo-
logical analysis has been applied to fMRI data.

Simplicial homology. The central object in algebraic
topology is a simplicial complex K, i.e. a high-dimensional
generalisation of a graph. It is commonly used to describe
complex objects such as manifolds (we deviate from this no-
tion but follow the conventional exposition, which focuses
primarily on a simplicial view). The connectivity of K is
analysed by means of simplicial homology, a framework
employing matrix reduction algorithms similar to Gaussian
elimination in order to assign K a graded set of groups,
the homology groups. Homology groups provide a de-
scription of the topological features of K. For low dimen-
sions d, these features afford an intuitive description and are
called connected components (d = 0), tunnels (d = 1), and
voids (d = 2), respectively. The number of d-dimensional
topological features is referred to as the dth Betti num-
ber βd ∈ N; it is used to distinguish between different
topological objects: for example, a circle—the boundary of
a disk—has Betti numbers (1, 1), while a filled square has
Betti numbers (1, 0).

Persistent homology. The analysis of real-world data sets
using topological methods requires addressing two limiting
factors: first, real-world data sets are typically unstructured
and require topological approximations2. Second, the ‘static’
topology of real-world data sets is often insufficient and one
is more interested in analysing the behaviour of a function

1There are more TDA publications, but the aforementioned
ones focus on graph classification, which is related to our scenario.

2The standard procedure involves calculating a neighbourhood
graph and expanding it into a simplicial complex. It will not be
required in our case.

over a data set. Betti numbers are of limited use here because
they can only represent simple counts. However, endowed
with additional information, they can be used as multi-scale
topological descriptors. This is the motivation of persistent
homology, an extension of simplicial homology to scenarios
in which a simplicial complex K and an additional function
f : K→ R exists. Assuming that f can only attain a finite
set of function values f0 ≤ f1 ≤ · · · ≤ . . . fm−1 ≤ fm,
it is possible to sort K according to f , leading to a nested
sequence of simplicial complexes

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Km−1 ⊆ Km = K, (1)

which is referred to as a filtration, with Ki := {σ ∈ K |
f(σ) ≤ fi}, i.e. each subset contains only those simplices
whose function value is less than or equal to the thresh-
old. A filtration can be seen as representing the ‘evolution’
of K along the function. Similar to the Watershed trans-
form in image processing (Roerdink & Meijster, 2000),
topological features are created (a new connected compo-
nent might arise) and destroyed (two connected components
might merge into one) over the course of a filtration. Per-
sistent homology is capable of tracking the evolution of
topological features and represents each feature as a tuple of
its creation and destruction value (fi, fj) ∈ R2, with i ≤ j
and fi, fj ∈ im(f).

Persistence diagrams. The tuples generated by persistent
homology are collated according to their dimension d and
stored in the dth persistence diagram Dd. This diagram
essentially summarises all topological activity in dimen-
sion d. As a consequence of the calculation process, all
points in Dd are situated above the diagonal3. The quantity
pers(x, y) := |y − x| of a point (x, y) ∈ Dd is called the
persistence of its corresponding topological feature. Low-
persistence features are usually considered to be ‘noise‘,
while high-persistence features are taken to correspond to
‘real’ features of a data set (Edelsbrunner et al., 2002). Re-
cent work cast some doubts as to whether this assumption is
always justified (Bendich et al., 2016); in particular for clin-
ical data, low persistence merely implies ‘low reliability’,
not necessarily ‘low importance’.

4. Methods
In the following, we will be dealing with time-varying fMRI,
i.e. we are observing an activation function f : V × T → R

over a 3D bounded volume V ⊂ R3 and a set of time
steps T . For t ∈ T , the function f(·, t) is typically visu-
alised using either stacks of images (Figure 1a) or volume
rendering (Figure 1b). While it would be possible to anal-
yse individual images, we opt for transforming V into a

3It is also possible to reverse the order of the filtration, leading
to all points being situated below the diagonal.
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(a) fMRI images (b) fMRI volume (c) Cubical complex (d) Persistence diagrams (e) Persistence images

Figure 1. A graphical overview of our method. We represent an fMRI stack (a) as a volume (b), from which we create a sequence
of cubical complexes (c). Calculating the persistent homology of the sequence of cubical complexes results in a set of time-varying
persistence diagrams (d) for dimensions 0, 1, and 2. We calculate summary statistics from the sequence of diagrams (not shown), and
convert them to vectorial representations (e) for downstream processing tasks (only the sequence for a single dimension is depicted here).

cubical complex C, i.e. an equivalent of a simplicial com-
plex, in which the triangles and tetrahedra (and their higher-
dimensional generalisations) have been replaced by squares
and cubes. In contrast to simplicial complexes, cubical com-
plexes are perfectly suited to represent an fMRI volume V
because each voxel corresponds precisely to one cubical
simplex (whereas if we were to use a simplicial complex to
model V , we would have to employ interpolation schemes
as there is no natural mapping from voxels to tetrahedra).

Terminology. We assume that we are given a data set of n
volumes V1, . . . ,Vn of the same dimensions, corresponding
to n different individuals, and a set of m time steps T =
{t1, . . . , tm}. We use fi to denote the activation function of
the ith volume, i.e. fi : Vi × T → R. Here, the activation
functions are aligned with respect to their time steps; this
is a simplifying assumption that simplifies the subsequent
analysis steps and does not impose a restriction in practice.

Computing topological features. We calculate the topo-
logical features of fi using the following steps: (1) Convert
the volume Vi to a cubical complex Ci. (2) For each time
step tj , assign the values of fi(·, tj) to Ci. (3) Calculate
persistent homology of the filtration according to Equa-
tion 1 and collate the resulting set of persistence diagrams.
Each participant is assigned persistence diagrams in dimen-
sions 0, 1, and 2. Since each Vi is three-dimensional, higher-
dimensional persistence diagrams are empty and we do not
have to consider them. We can plot the resulting persistence
diagrams of each participant as a set of points in R3, with
the additional axis being used to represent time (Figure 1d).

4.1. fMRI dataset

We evaluate our topological approach using open-source
fMRI data (Richardson et al., 2018), available on the Open-
Neuro database (accession number ds000228). Partici-
pants were 33 adults (18–39 years old; M = 24.8, SD =
5.3; 20 female) and 122 children (3.5–12 years old; M
= 6.7, SD = 2.3; 64 female) who watched the same an-
imated movie (Sohn & Reher, 2009) while undergoing
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Figure 2. Example of a summary statistics curve, based on the
infinity norm of a persistence diagram, for one of the participants.

fMRI (gradient-echo EPI sequence: TR = 2 s, TE = 30 ms,
flip angle = 90°, matrix = 64× 64, slices = 32, interleaved
slice acquisition). Data were collected using the standard
Siemens 32-channel head coil for adults and older children.
One of two custom 32-channel phased-array head coils was
used for younger children (smallest coil: N = 3; M = 3.91,
SD = 0.42 years old; smaller coil: N = 28; M = 4.07, SD
= 0.42, years old). Acquisition parameters differed slightly
across participants but all fMRI data were resampled to have
the same voxel size: 3 mm isotropic with 10% slice gap. A
T1-weighted structural image was also collected for all sub-
jects (MPRAGE sequence: GRAPPA = 3, slices = 176, res-
olution = 1 mm isotropic, adult coil FOV = 256 mm, child
coils FOV = 192 mm). Imaging data were pre-processed
using fMRIPrep v1.1.8 (Esteban et al., 2019) A full descrip-
tion of the pre-processing can be found in another study
using this dataset (Yates et al., 2020). The relevant outputs
of this pipeline are: a 4-dimensional (x-coordinate by y-
coordinate by z-coordinate by time) fMRI time series and
a whole-brain mask for each individual subject. The fMRI
time series includes 162 2 s time steps that correspond to
the same point in the movie for each subject.

4.2. Global analysis based on summary statistics

Extracting information from the time-varying persistence
diagrams of each participant is impeded by their complex
geometrical structure. We first focus on a description of
global properties of participants, restricting ourselves to
persistence diagrams with d = 2. To this end, we calcu-
late topological summary statistics, such that the sequence
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Figure 3. An embedding of the distances between topological sum-
maries, colour-coded by the subject age group.

of diagrams for the ith participant becomes scalar-valued
time-series. We primarily focus on one summary statis-
tic here (the results that we obtain with total persistence—
another summary statistic—are virtually identical, so we
omitted them), i.e. the infinity norm ‖D‖∞ of a persistence
diagram (Cohen-Steiner et al., 2007), defined by

‖D‖∞ := max
x,y∈D

pers(x, y)p, (2)

with p ∈ R. We found p = 1 to be sufficient (implying that
we use the original persistence values). Since Equation 2
results in scalar values, it turns a sequence of persistence
diagrams into a time series. Figure 2 depicts this for a single
participant. Letting C(i) refer to the time series ‘curve’ of
participant i, we can cluster different curves by calculating
the Euclidean distance between their curve representations.
Using hierarchical clustering (Hastie et al., 2009, pp. 520–
528), we thus obtain a clustering solely based on summary
topological information.

Evaluation. The clustering is capable of discovering a
split between two groups tightly associated with the partici-
pants’ age, even though our topological feature extraction
pipeline is unaware of these groups a priori. A binary clus-
tering shows high alignment scores with those two groups:
the adjusted Rand index (Hubert & Arabie, 1985) of the par-
tition is 0.74 (where 1.0 would indicate perfect agreement
up to permutation), while the adjusted mutual information
score (Vinh et al., 2010) is 0.58 (again, 1.0 would indicate
perfect agreement). Both indices are adjusted for chance,
i.e. a value of 0.0 would indicate that the clustering is essen-
tially random. This alignment demonstrates that there are
topological differences in the way different age groups pro-
cess the movie; we plan on further studying them in future
work. On the qualitative level, a visualisation of the dis-
tance between the topological summaries (Figure 3) shows
that the variability within one age group (red points; after
performing the analysis, the labels were uncovered and are
seen to correspond to the adult participants in the study) is
clearly larger than for the remaining ones. ‘Disentangling’
the remaining groups will require a more sensitive analysis.

4.3. Local analysis based on brain state trajectories

The global analysis is useful to obtain summary information
about the data set and observe overall groupings. We can
also use topological information to visualise (and analyse)

(a) High temporal coherence (b) Low temporal coherence

Figure 4. Brain state trajectories of two participants based on a per-
sistence image representation. Each point represents an individual
time step; the colour correspond to time (moving from red to blue
as time progresses).

the status of each participant during an experiment. This
necessitates being able to define distances or dissimilari-
ties between persistence diagrams. Since metrics between
persistence diagrams have a high computational complex-
ity (Kerber et al., 2017), we sidestep this issue and use
persistence images (Adams et al., 2017), a method for using
density estimation to convert a persistence diagram into an
‘image’ of fixed dimensions (Figure 1e). Thus, we trans-
form the persistence diagrams of the ith participant into a
matrix X(i) ∈ Rm×r2 , where the jth row corresponds to
the ‘unravelled’ persistence diagram of time step tj . We use
PHATE (Moon et al., 2019), a powerful embedding algo-
rithm for time-varying data, to represent X(i) as a lower-
dimensional trajectory. This trajectory represents the state
of the brain, measured using topological features, so we
refer to it as the brain state trajectory. Figure 4 depicts
example trajectories. We assess the temporal coherence
of each trajectory, i.e. to what extent the trajectory revis-
its previous time steps, by counting the fraction of how
many of the k = 3 nearest neighbours of each point are
more than t = 3 time steps removed from it, and then cal-
culating the average score over the length of a trajectory.
According to this measure, the coherence of one of the par-
ticipant groups is on average higher than those of the other
groups (M = 47.31, SD = 5.31 vs. M = 42.30, SD = 3.93;
upon uncovering the labels, these participants turned out
to comprise the youngest participants). Hence, this group
appears to give rise to temporally-coherent brain state tra-
jectories (Figure 4a), hinting at differences in brain states
between participant groups.

5. Conclusion
This paper demonstrates the potential of topology-based fea-
ture extraction for fMRI data to permit analyses on both the
global and the local level. In the future, we want to analyse
brain state trajectories and link states back to ‘events’ in the
task, such as the appearance of a character in a movie. More-
over, we plan on investigating to what extent topological
features can be useful to predict or ‘learn’ information about
participants, including their age group or certain behavioural
scores, for example.
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