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Data integration is important but challenging

• It is difficult to apply multiple sequencing technologies to the same cell
•Thus, data loses cell-to-cell correspondence across domains
•We need unsupervised alignment algorithms to recover cell-to-cell
correspondences

Figure 1: To study genomic heterogeneity, we need to be able to align data sets from single cell
measurements without cell-to-cell or feature-to-feature correspondences.

We present SCOT, an unsupervised alignment algorithm that uses Gromov-
Wasserstein optimal transport to find a probabilistic mapping between samples
from two sequencing domains.
SCOT yields state-of-the-art alignment but in less time and with
fewer hyperparameters.

Previous Unsupervised Alignment Algorithms

Figure 2: Previous methods attempt to discover the underlying manifold structure

•MMD-MA [4] and UnionCom [1] align and embed the data into a new space
•Both methods require 4 hyperparameters

Discrete optimal transport assigns probabilities
between data points in different domains

Figure 3: Coupling
matrices relate probability
distributions

•Optimal transport finds the most cost-effective
way to transform one probability distribution
into another [5]

•Discrete optimal transport outputs a coupling
matrix Γ where each entry Γij assigns a
probability that sample i in the first domain
corresponds to sample j in the second domain

•Gromov-Wasserstein optimal transport
preserves intra-domain pairwise distances [6]

Single-Cell alignment using Optimal Transport (SCOT)

Figure 4: (1) Compute intra-domain distance matrices through k-nearest neighbor (kNN) graphs,
(2) Obtain a coupling matrix via entropically regularized Gromov-Wasserstein optimal transport,
and (3) Align the data sets via barycentric projection

SCOT gives state-of-the-art performance for single-cell
multi-omics alignment

Figure 5: FOSCTTM for SCOT, MMD-MA, and
UnionCom

•We compare SCOT to
MMD-MA and UnionCom
for two real-world data sets.

• scGEM [3] co-assays gene
expression and DNA
methylation

• SNAREseq [2] co-assays
chromatin accessibility and
gene expression.

Figure 6: SCOT’s alignment for scGEM (left) and SNAREseq (right)

SCOT successfully aligns simulated data

We benchmark SCOT on three simulated data sets from [4]:

Figure 7: Top: PCA projections of domain 1, Middle: PCA projections of domain 2, Bottom:
SCOT’s alignment visualized with PCA projections

SCOT is faster than other alignment algorithms and
has fewer hyperparameters

Our method, SCOT,
• performs on par with
other methods,

• has only 2
hyperparameters, and

• is on average 25 times
faster than previous
algorithms

Full details: https://
tinyurl.com/SCOT20

Figure 8: Run times for SCOT, MMD-MA, UnionCom, and
UnionCom GPU

Acknowledgements

William S. Noble’s contribution to this work was funded by NIH award U54 DK107979. This material is based upon
work supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1644760.

References

[1] Kai Cao et al. “Unsupervised Topological Alignment for Single-Cell Multi-Omics Integration”. In: bioRxiv (2020).
[2] Song Chen, Blue B Lake, and Kun Zhang. “High-throughput sequencing of transcriptome and chromatin accessibility in the same cell”. In: Nature

Biotechnology 37.12 (2019), pp. 1452–1457.
[3] Lih Feng Cheow et al. “Single-cell multimodal profiling reveals cellular epigenetic heterogeneity”. In: Nature Methods 13.10 (2016), pp. 833–836.
[4] Jie Liu et al. “Jointly embedding multiple single-cell omics measurements”. In: BioRxiv (2019), p. 644310.
[5] Gabriel Peyré, Marco Cuturi, et al. “Computational optimal transport”. In: Foundations and Trends in Machine Learning 11.5-6 (2019), pp. 355–607.
[6] Gabriel Peyré, Marco Cuturi, and Justin Solomon. “Gromov-wasserstein averaging of kernel and distance matrices”. In: International Conference on

Machine Learning. 2016, pp. 2664–2672.

https://tinyurl.com/SCOT20
https://tinyurl.com/SCOT20

	References

