
Abstract
Co-operative	binding of	proteins	called	Transcription	Factors	(TFs)	to	DNA	

modulates	gene	expression.	Neural	networks	have	been	used	to	find	candidate	
pairs	of	TFs	with	non-additive	interaction	effects. We	design	a	simulated	
dataset	to	study	the	tendency	of	such	networks	to	learn	false	positive	

interactions.	We	find	that	popular	network	architectures	are	highly	susceptible
to	learning	false-positive	interactions	that	have	comparatively	large	

magnitudes	- however,	the	learned	interactions	may	not	improve	loss. We	
introduce	a	statistical	test for	whether	a	learned	interaction	significantly	
improves	prediction	loss.	Combined	with	checking	for	consistency	across	
different	architectures,	this	test	reliably	distinguishes	between	true	&	false	

interactions	in	our	simulated	data.

Simulation
- We	designed	a	regression	task	where	strength	of	TF	binding	is	a	function	

of	2	motifs	called	GATA1	and	TAL1	(see	Fig.	2)
- Strength	of	binding	(the	output)	is	measured	in	integer-valued	“counts”	

(the	units	of	typical	experiment),	sampled	from	Poisson
- Two	sets	of	labels	for	the	simulated	sequences:
- Neg.	control:	binding	output	is	additive func.	of	the	motifs
- Pos.	control:	binding	output	is	super-additive in	the	motifs

- Ideal	model	trained	on	negative	control	dataset	would	predict	no	
interaction effect	between	the	motifs

How Interactions Are Computed
- Setting:	model	that	accepts	one-hot	encoded	DNA	sequence	and	predicts	

binding	strength	as	output.	“Knocking	out”	a	motif	means	replacing	the	
motif	sequence	with	random	sequence	that	is	a	poor	motif	match

- sGT :=	sequence	containing	both	GATA1	and	TAL1,	sG :=	seq.	with	TAL1	
“knocked	out”,	sT :=	seq	with	GATA1	“knocked	out”,	s∅ :=	seq	with	both	
TAL1	&	GATA1	“knocked	out”,	f(s) :=	model	prediction	on	sequence	s.

Figure 2

Main	effect	MG of	GATA1	:=	f(sG)	– f(s∅)
Main	effect	MT of	TAL1	:=	f(sT)	– f(s∅)
Joint	contribution	JG,T	 of	both	:=	f(sGT)	– f(s∅)
Interaction	effect	IG,T :=	JG,T	 - (MG +	MT)

Model Architectures And Training
- Applied	variance-stabilizing	Anscombe	transform	g(x)	=	2	sqrt(x	+	3/8) to	

counts,	followed	by	MSE	loss	(greatly	improved	model	fitting;	
transforming	counts	e.g.	with	log	transform	is	common	in	genomics).	
Note:	interactions	were	computed	in	original	counts	space

- Trained	3	different	types	of	CNN	architectures	with	different	#layers,	
hidden	units	and	filter	widths

- Each	architecture	was	trained	with	3	different	L1	regularization	weights
- Each	of	the	9	combos	of	arch	&	regularization	was	trained	with	5	seeds.
- Result:	45	models	each for	pos.	&	neg.	control	data	(90	total)
- Trained	an	additional	90	models	to	explore	effect	of	sequence	padding

Results
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(1) Strength of interaction effect 
is not a reliable indicator of 
ground-truth interaction
We	can	compare	the	mean	
magnitude	of	IG,T on	the	negative	
control to	interaction	effects	
computed	between	random	
positions	in	shuffled	sequences	
(a	popular	choice	of	null	
distribution).	Mean	interactions	
magnitude	in	negative	control	
greatly	exceeds	null distribution

This	occurs	because	the	magnitude	of	the	interaction	effect	is	
positively	correlated	with	magnitude	of	main	effects (see	Fig.	4)

(2) Model loss on negative control 
frequently improves when 
interaction effect is subtracted

Figure 1

Figure 3
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Correlation between |IG,T| & MG + MT

Figure 4

We	used	a	one-sided,	paired	Wilcoxon	test	to	
check	if	MSE(f(sGT))	>	MSE(f(sGT)	– IG,T).	All	45/45
of	models	trained	on	pos.	control	data	had	sig.	
beneficial	interactions	(p-vaue threshold=0.05,	
both	‘valid’	&	‘same’	padding),	while	for	neg.	
control,	only	1/45 models	with	‘valid’	padding	
(red	dot	in	Fig	4)	&	19/45 models	with	‘same’	
padding	had	sig.	beneficial	interactions.	Even	
when	the	paired	test	was	significant,	unpaired	test	
was	always	non-significant	on	negative	control	
because	the	overall	difference	was	weak	(e.g.	Fig.	
8,	corresponding	to	the	model	in	red	in	Fig	4).

Look At The Loss: Detecting False-Positive Feature 
Interactions Learned by NNs on Genomic Data

Mara Finkelstein*, Avanti Shrikumar*†, Anshul Kundaje† 
(*co-first authors, †co-corresponding authors)

M
ea

n 
|I

G
,T
| 

on
 te

st
-s

et

Test-set MSE Loss Test-set MSE Loss

Negative control Positive control

Figure 5

I G
,T

fo
r n

eg
at

iv
e 

co
nt

ro
l, 

va
lid

 p
ad

di
ng

Max. motif distance from center

Consistent	with	this,	
model	loss	was
positively	correlated	
with	mean	|IG,T| for	
the	negative	control	
dataset,	but	not	the	
positive	control	
dataset	(Fig	5).	

We	found	that	inductive	bias led	
models	trained	with	‘valid’	padding	
to	learn	strong	false-positive	
interactions	at	the	flanking	
sequences	(Fig	6).	This	trend	was	
not	observed	for	‘same’	padding.

Figure 6

(3) On held-out data, testing for consistent, significant improvement in loss due to 
including interaction effect can separate true from false interactions

We	also	observed	that	the	increase	in	MSE	
loss	from	subtracting	the	interaction	effect	
was	consistently	higher	for	training	than	
testing	data	on	the	negative	control	(Fig	7),
suggesting	overfitting	may	play	a	role	in	
learning	fake	interactions

Note	that	in	cases	where	interactions	helps	the	negative	control	loss,	model	uses	
IG,T	 to	compensate	for	mis-predicted	MG + MT

Median increase in loss: training
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Figure 7

Figure 8

We	can	compute	predictions	with	
interaction	subtracted	by	replacing	
f(sGT)with	f(sGT)	– IG,T .	Doing	this	
frequently	improved	the	loss	on	the	
negative	control	(esp.	when	“valid”	
padding	was	used).	Fig	4 shows	
results	with	“valid”	padding.


