

(*co-first authors, +co-corresponding authors)

to learning false-positive interactions that have comparatively large interactions in our simulated data.

ensure the correct genes are active in the correct cell types

- <u>interaction</u> effect between the motifs

How Interactions Are Computed

- Setting: model that accepts one-hot encoded DNA sequence and predicts binding strength as output. "Knocking out" a motif means replacing the motif sequence with random sequence that is a poor motif match
- s_{GT} := sequence containing both GATA1 and TAL1, s_G := seq. with TAL1 "knocked out", s_T := seq with GATA1 "knocked out", s_{ϕ} := seq with both TAL1 & GATA1 "knocked out", *f(s)* := model prediction on sequence *s*.

Main effect M_G of GATA1 := $f(s_G) - f(s_{\phi})$ Main effect M_T of TAL1 := $f(s_T) - f(s_{\phi})$ Joint contribution $J_{G,T}$ of both := $f(s_{GT}) - f(s_{\emptyset})$ Interaction effect $I_{G,T} := J_{G,T} - (M_G + M_T)$

Results

(1) Strength of interaction effect is not a reliable indicator of ground-truth interaction

We can compare the mean magnitude of $I_{G,T}$ on the <u>nega</u> control to interaction effects computed between random positions in shuffled sequen (a popular choice of null distribution). Mean interacti magnitude in negative contr greatly exceeds null distribution

This occurs because the magnitude of the interaction effect is positively correlated with magnitude of main effects (see Fig. 4)

(3) On held-out data, testing for <u>consistent</u>, <u>significant improvement in loss</u> due to including interaction effect can separate true from false interactions

	We used a one-sided, paired Wilcoxon test to $A = \frac{1}{2} = \frac{1}{$		
<u>gative</u>	check if MSE($f(s_{GT})$) > MSE($f(s_{GT}) - I_{G,T}$). <u>All 45/45</u> of models trained on pos. control data had sig.	2.5	
ts	beneficial interactions (p-vaue threshold=0.05,	2.0 -	I
n nces	both 'valid' & 'same' padding), while for neg. control, only <u>1/45</u> models with 'valid' padding	1.5	I
tions	(red dot in Fig 4) & <u>19/45</u> models with 'same' and padding had sig. beneficial interactions. Even	1.0 -	
rol ution	when the paired test was significant, unpaired test	0.5 -	
ution	was always non-significant on negative control because the overall difference was weak (e.g. Fig.	0.0	0
	8 , corresponding to the model in red in Fig 4).		Ī

