Slide-free MUSE Microscopy to H&E Histology Modality Conversion via Unpaired Image-to-Image Translation GAN Models

Tanishq Abraham, Andrew Shaw, Austin Todd, Daniel O'Connor Ph.D., Richard Levenson M.D.

ICML Computational Biology Workshop 2020

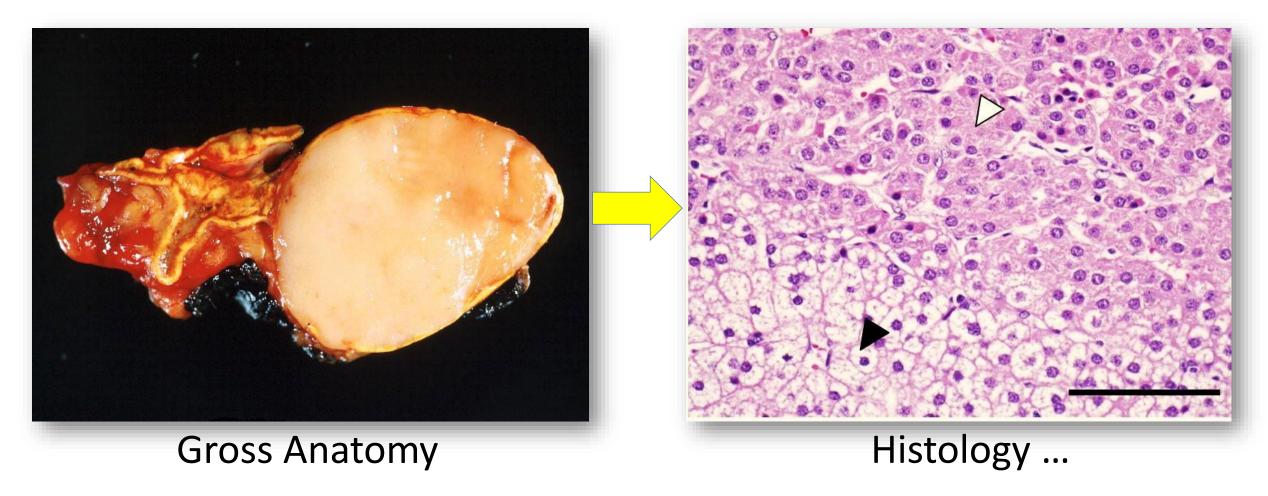
7/17/2020

❀ UNIVERSITY OF SAN FRANCISCO

Background

Pathology

(Still the) gold-standard for diagnosis—and therapy guidance



Histology

The problem:

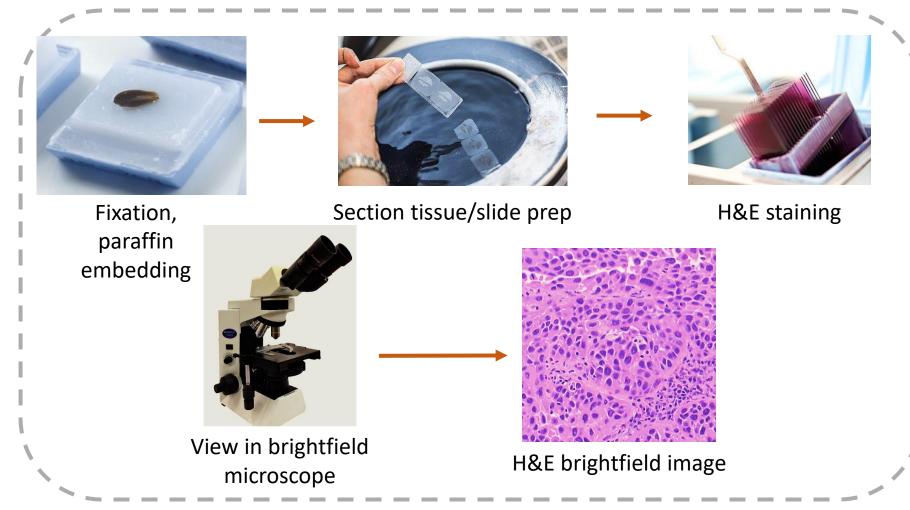
Hours to days

Procedure (or preclinical research)

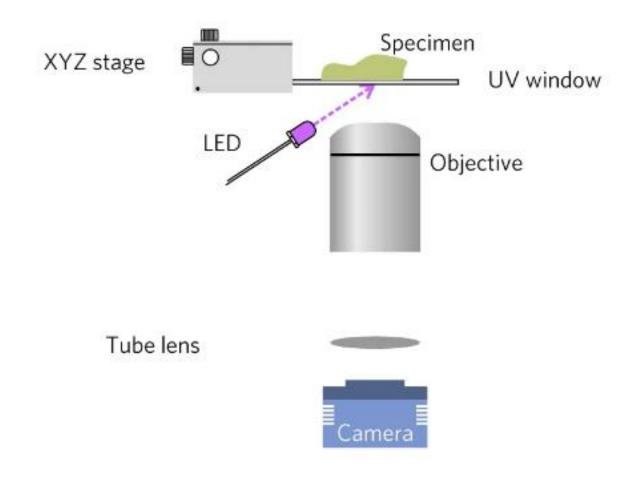
Definitive answer

Traditional H&E (hematoxylin & eosin) histology workflow

Biopsy

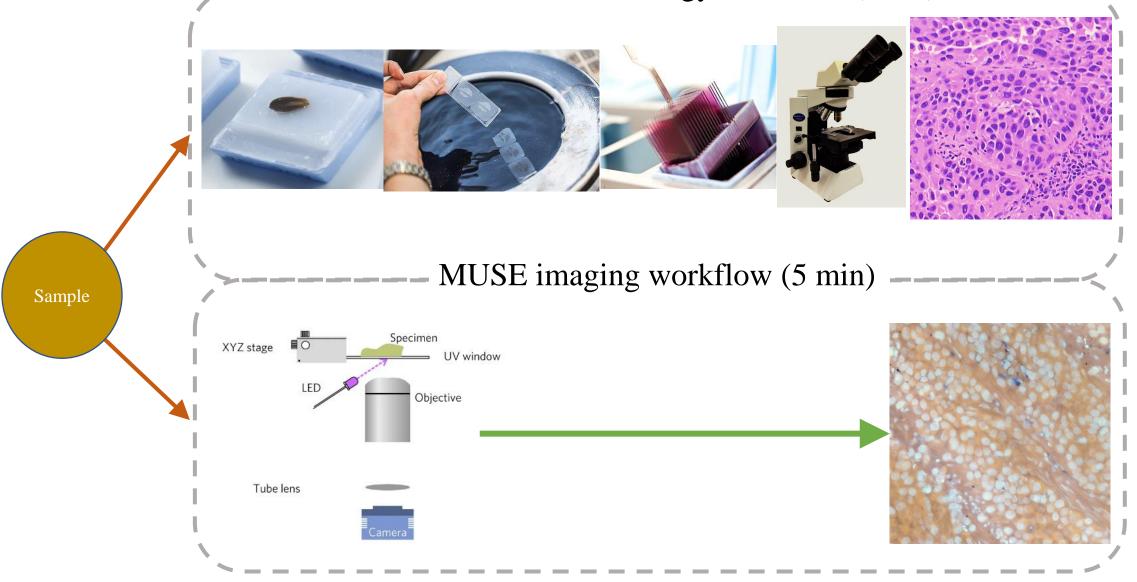


<u>Microscopy with Ultraviolet Surface Excitation</u> (MUSE)



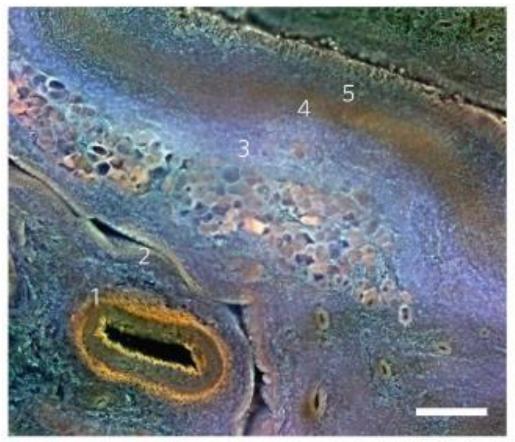
Comparison of the workflows

--- Traditional H&E histology workflow (8 hrs) ----

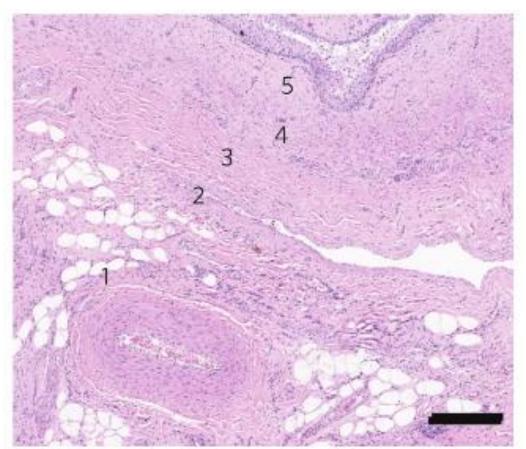


What's the problem?

- The pathologists like H&E!
- Need to convert to "virtual" H&E



MUSE (porcine renal tissue)

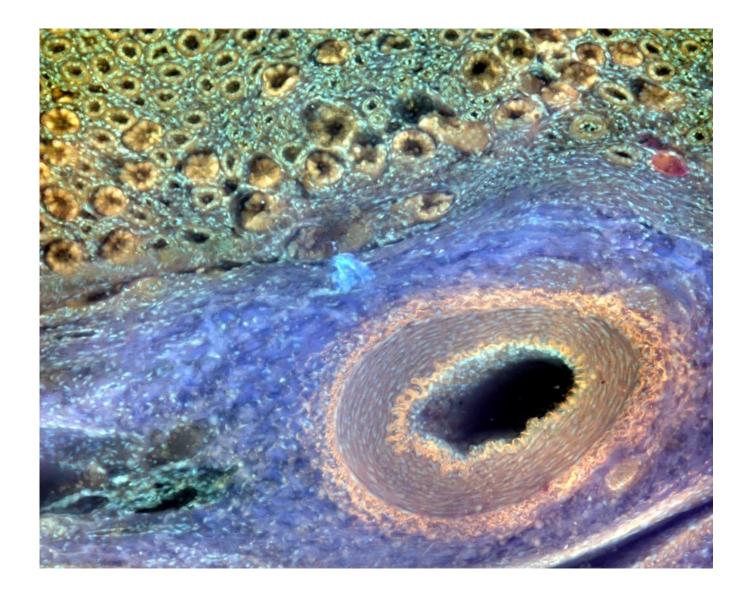


H&E (porcine renal tissue)

Previous method – color mapper

Colormapper - Kidney.png								
Pan ᅌ	Zoom In	Actual Size	Zoom Out	75.0%	🔽 🗌 Zoom	to Fit		
	S .:							
(2 S /						No Car		
Unmix Controls:				Remix Controls:				
Cytoplasm:	+ Spectru			Cytoplasm:	+	Spectrum:		
Nuclei:	+ Spectru			Threshold:	0		0.00	
Subtract Background (Pure Spectrum)				Gain:	-0		1.00	•
Amount:	0	64	4 0	Gamma:		0	1.00	0
				Nuclei:	+	Spectrum:		
				Threshold:	0		0.00	•
				Gain:	0		2.10	\$
				Gamma:		0	1.00	0
2				Remix Mode	Brightfield (Beer-Lambert) 📀	

Color conversion is hard if there are more than 2 colors...



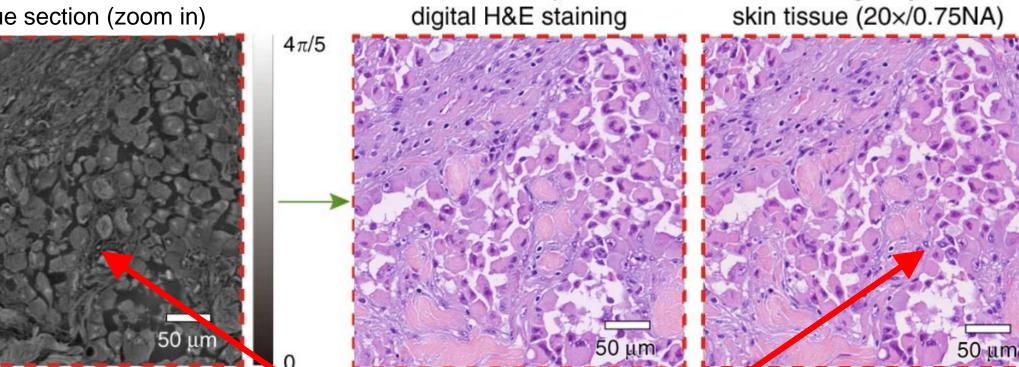
...so we explored AI-based approaches

Similar approaches need context for color-mapping...

(Antic, 2018)

Microscopy modality conversion – prior work

QPI of unstained skin tissue section (zoom in)



PAIRED

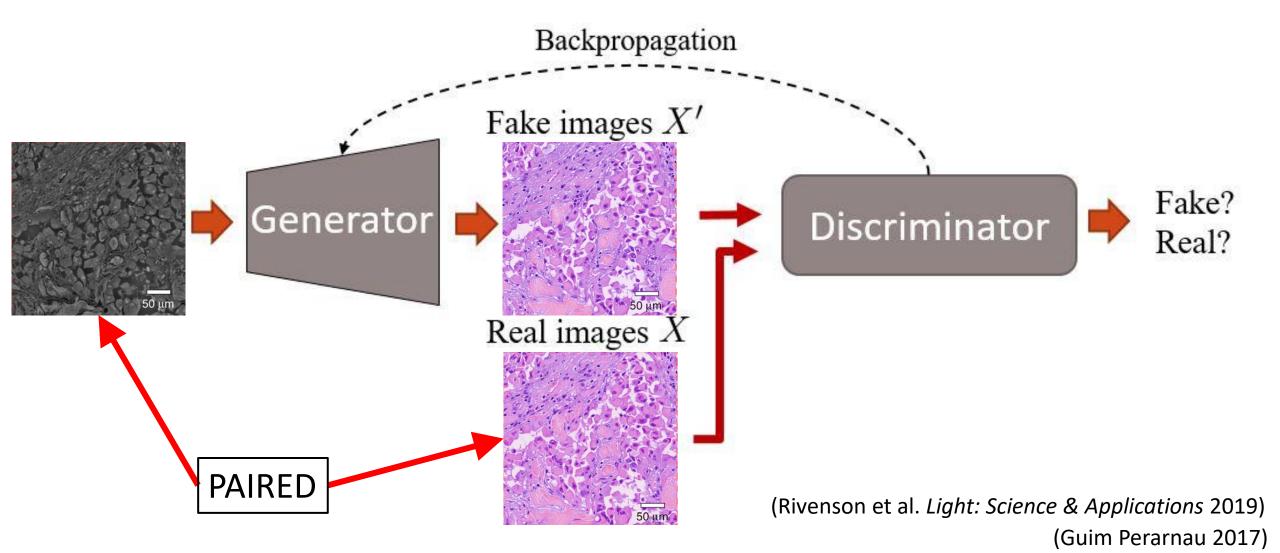
Network output —

(Rivenson et al. Light: Science & Applications 2019)

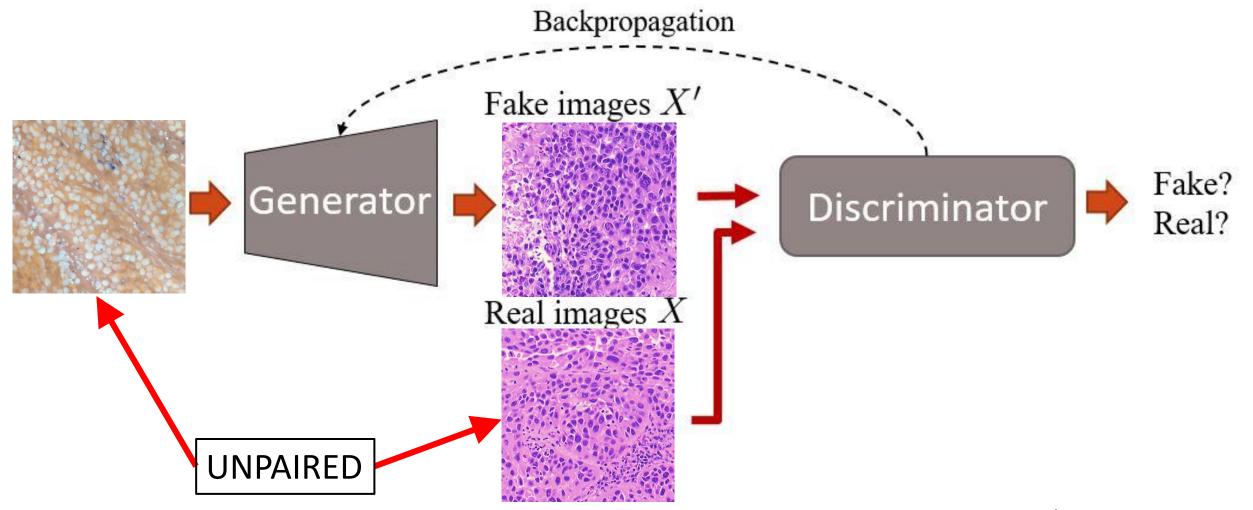
Brightfield image of the

H&E histologically stained

Generative adversarial networks (GANs)



GANs don't work with unpaired datasets



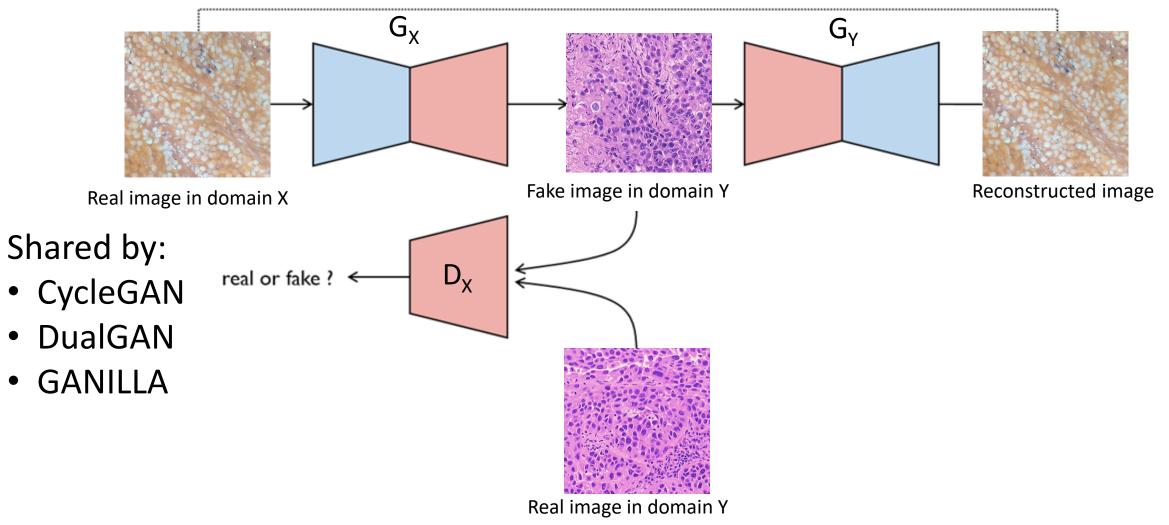
(Guim Perarnau 2017)

Unpaired image-toimage translation

NVIDIA partner, Brighter Al

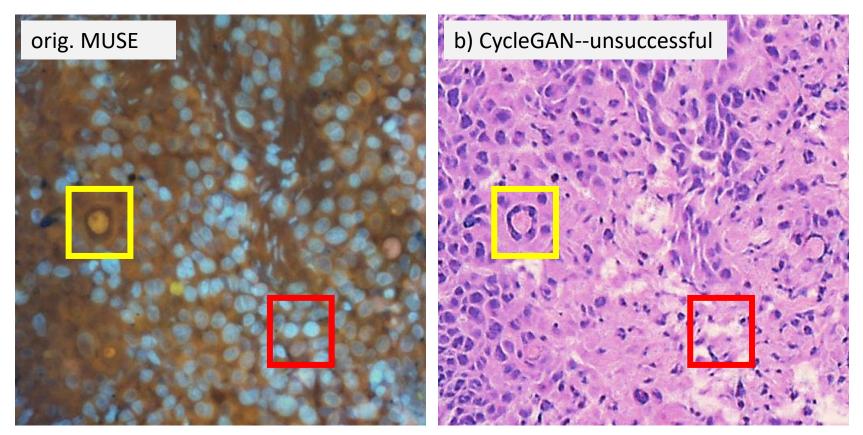
A strategy for unpaired image-to-image translation

Reconstruction loss

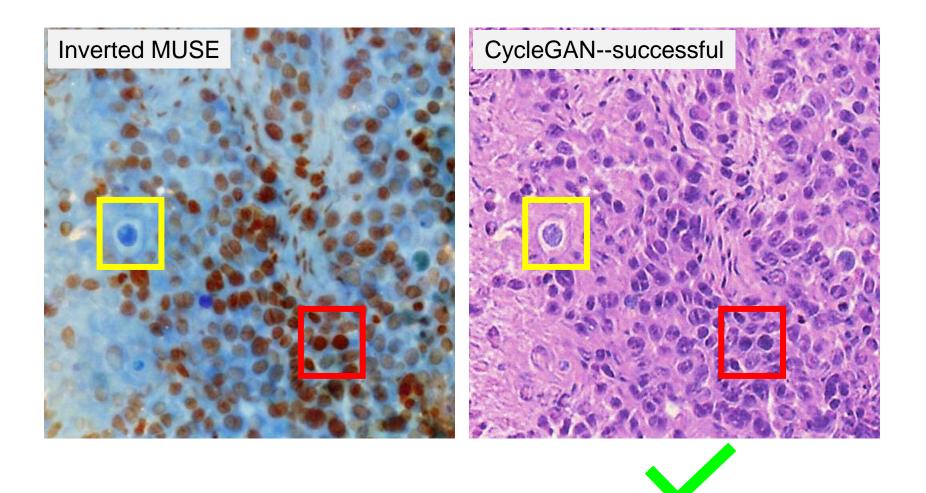


Results and Discussion

Training on original MUSE images fails

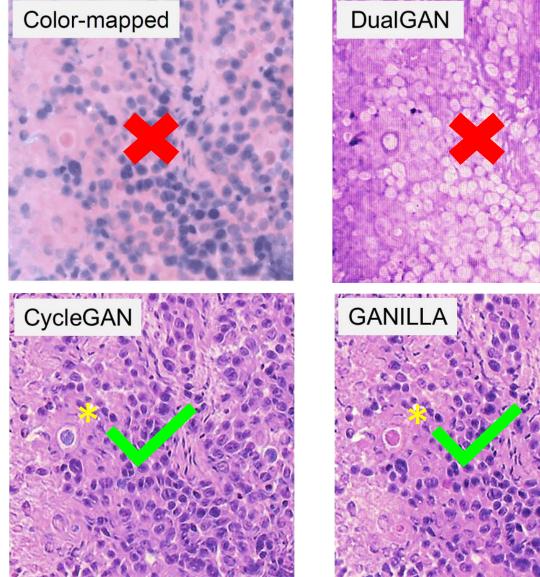


Training on inverted MUSE images succeeds

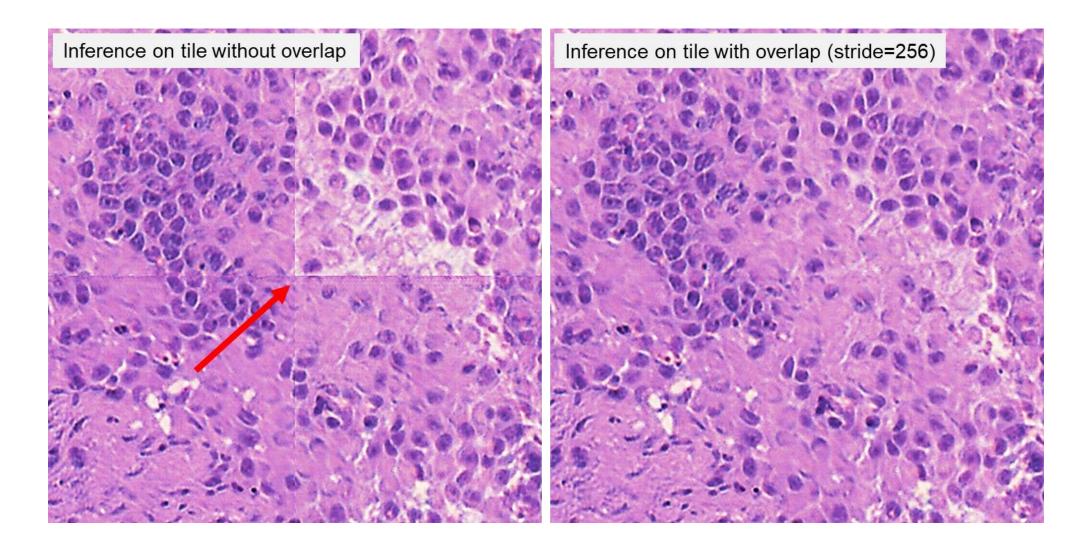


Even with image inversion, not all GANs succeed

Not a GAN



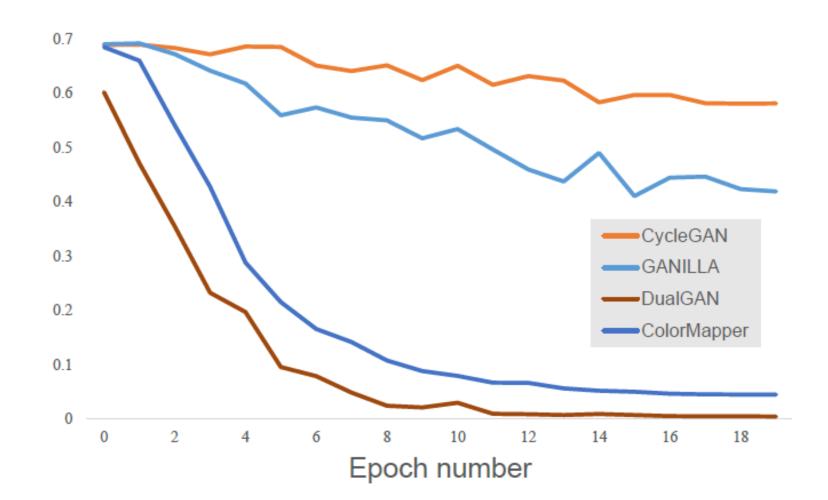
Tiling artifacts are solvable for image montages



"Quantitative" evaluation

- Training separate classifier to classify real & generated H&E images
- External critic score (higher is better):

0.8



Discussion

- Challenges and future work:
 - Inversion effect additional loss constraints
 - Lack of quantitative metrics pathologist evaluation
 - Preservation of content (prevention of hallucinations) additional loss constraints?
 - Slow model inference GAN compression

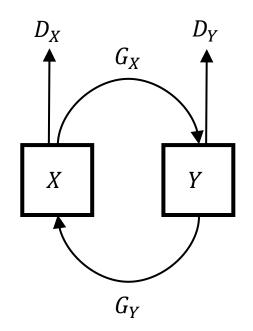
Conclusion

- Successful MUSE-to-H&E modality conversion with unpaired imageto-image translation
- Slide-free microscopy may see widespread adoption!

Appendix (Methods)

Method details

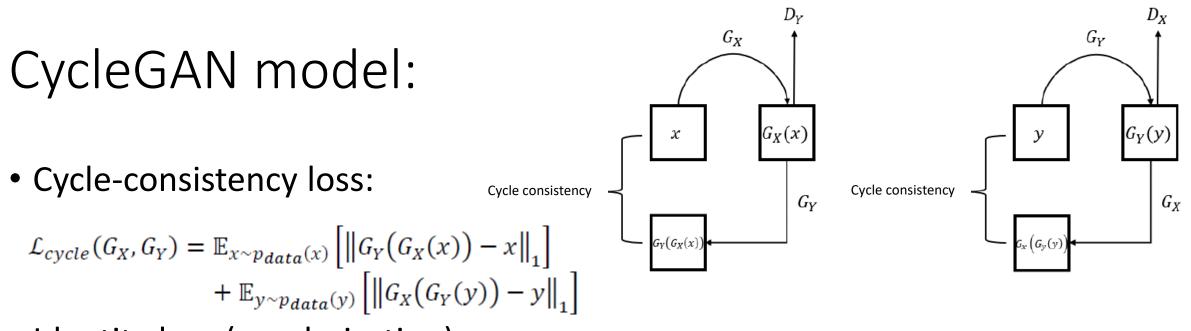
- Dataset Urothelial Cell Carcinoma in Human Kidney
- Converting from MUSE (X) to H&E (Y) and back to MUSE (X)
- Discriminator (D_Y) that classifies between real and generated H&E images
- Generator (G_X) trained to fool the discriminator
- Generators (G_X and G_Y) trained to reconstruct MUSE image



Tested techniques:

• All methods use GAN adversarial loss:

$$\begin{aligned} \mathcal{L}_{GAN}(G_X, D_Y, X, Y) \\ &= \mathbb{E}_{y \sim p_{data}(y)} [\log D_Y(y)] \\ &+ \mathbb{E}_{x \sim p_{data}(x)} \left[\log \left(1 - D_Y(G_X(x)) \right) \right] \end{aligned}$$



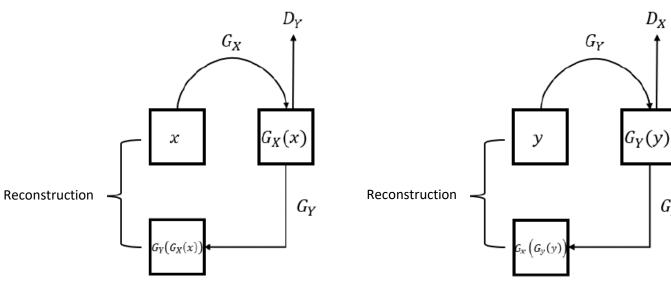
• Identity loss (regularization):

 $\begin{aligned} \mathcal{L}_{identity}(G_X, G_Y) &= \mathbb{E}_{y \sim p_{data}(y)} [\|G_X(y) - y\|_1] \\ &+ \mathbb{E}_{x \sim p_{data}(x)} [\|G_Y(x) - x\|_1] \end{aligned}$

- Generator: Residual block-based network in Johnson et al.
- Discriminator: 70x70 PatchGAN

DualGAN model:

• Reconstruction loss:



 D_X

 G_X

$$\mathcal{L}_{G}(G_{X}, G_{Y}) = \lambda_{X} \| x - G_{Y}(G_{X}(x)) \|_{1} + \lambda_{Y} \| y - G_{X}(G_{Y}(y)) \|_{1} - D_{X}(G_{Y}(y)) - D_{Y}(G_{X}(x))$$

• Discriminator loss:

$$\mathcal{L}_D(G_X, D_Y, X, Y) = D_Y(G_X(x)) - D_Y(y)$$

- Generator: U-net
- Discriminator: 70x70 PatchGAN
- WGAN training procedure

GANILLA

- Same as CycleGAN, different generator!
- Aim to preserve content

