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Abstract

Current neural decoding methods typically aim
at explaining behavior based on neural activity
via supervised learning. However, since gener-
ally there is a strong connection between learning
of subjects and their expectations on long-term
rewards, we hypothesize that extracting an in-
trinsic reward function as an intermediate step
will lead to better generalization and improved
decoding performance. We use inverse reinforce-
ment learning to infer an intrinsic reward function
underlying a behavior in closed form, and asso-
ciate it with neural activity in an approach we
call NeuRL. We study the behavior of rats in a
response-preparation task and evaluate the per-
formance of NeuRL within simulated inhibition
and per-trial behavior prediction. By assigning
clear functional roles to defined neuronal popu-
lations our approach offers a new interpretation
tool for complex neuronal data with testable pre-
dictions. In per-trial behavior prediction, our ap-
proach furthermore improves accuracy by up to
15% compared to traditional methods.

1. Introduction
Neural decoding methods use neural spiking activity from
the brain to infer predictions about behavior, like explaining
or predicting movements based on activity in the motor cor-
tex (Peixoto et al., 2021; Melbaum et al., 2021; Sani et al.,
2021) or decisions based on activity located in prefrontal
and parietal cortices (Baeg et al., 2003; Ibos & Freedman,
2017). Decoding can be used to control brain machine inter-
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faces or to extract general working principles of the brain.
Recently, deep learning has shown great potential in a num-
ber of domains and is outperforming classical approaches
in the field of neural decoding (Glaser et al., 2019; 2017).
Nevertheless, decoding methods are usually trained super-
vised for prediction (Xu et al., 2019; Iqbal et al., 2019),
mapping greedily from neural signals directly to actions
without reasoning about the long-term consequences of the
actions. In the reinforcement learning (RL) paradigm, on
the other hand, this is accounted for explicitly by learning
a policy which maximizes long-term rewards in expecta-
tion. Prior work also showed that learning in the brain is
driven by changes in the expectations about rewards and
punishments (Schultz et al., 1997) which naturally aligns
with the RL framework. Importantly, the immediate reward
function in RL can be seen as the most succinct, robust, and
transferable definition of the behavior to be learned (Abbeel
& Ng, 2004). Consequently, in this work, we propose the
use of inverse reinforcement learning (IRL) methods to in-
fer an intrinsic reward function explaining observed animal
behavior, allowing us to draw conclusions about neural ac-
tivity and its relation to the recorded behaviors, as well as
improving generalization and decoding performance.

We use Inverse Action-value Iteration (IAVI) (Kalweit et al.,
2020) to calculate the immediate reward function analyti-
cally in closed-form assuming that a demonstrator is fol-
lowing a Boltzmann distribution over its unknown optimal
action-values which in turn represent the expected long-term
return for given taken actions. This common assumption
has already been applied to model the behavior of humans
and animals in a plethora of prior work (Bitterman, 1965;
Feher da Silva et al., 2017; Baker et al., 2007). The learned
reward function formalized in IAVI encodes the local prob-
abilities of the demonstrated actions while enforcing the
local probabilities of the maximizing actions in the future
under Q-learning. In contrast, common supervised learning
methods only consider the action taken in the current time
step. In this work we therefore propose to instead estimate a
mapping of recorded neural signals to the immediate reward
function learned via IRL as an intermediate step to find
coherences between neural spikings and taken actions, an
approach we call NeuRL.
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To this end, we study the behavior of rats in a response-
preparation task where rats ought to hold a lever until a cue
(vibration to the paw) indicates that the animal should re-
lease. If the rats release within an allowed response window,
they receive sugar water as reward. The data is recorded
with electrodes spanning all cortical layers. All recorded
neurons are from the Rostral Forelimb Area (RFA), which
strongly contributes to planning and preparing for move-
ments, with some having a direct connection to the Caudal
Forelimb Area (CFA), responsible for motor execution.

Our contributions are threefold. First, we formalize NeuRL,
a neural decoding method based on inverse action-value
iteration. Second, we evaluate the performance of NeuRL
within the simulated inhibition of neurons projecting from
RFA to CFA and provide a comparison to real-world experi-
mental data. Third, we evaluate NeuRL in per-trial behavior
prediction showing state-of-the-art performance.

2. Background
Here we fix notation and introduce RL and IRL formally.

2.1. (Inverse) Reinforcement Learning

We model the task of neural decoding in the RL frame-
work, where an agent (here a rat) acts in an environment
as shown in Figure 1. Following policy π by applying ac-
tion at ∼ π from n-dimensional action-space A in state
st, it reaches some state st+1 ∼ M according to stochas-
tic transition model M and receives scalar reward rt in
each discrete time step t. The agent has to adjust its
policy π to maximize the expectation of long-term return
R(st) =

∑
t′>=t γ

t′−trt′ , where γ ∈ [0, 1] is a discount
factor. The action-value function then represents the ex-
pected long-term value of an action when following policy π
thereupon, i.e. Qπ(st, at) = Eat′>t∼π,st′>t∼M[R(st)|at].
From the optimal action-value function Q∗ one can easily
derive a corresponding optimal policy π∗ by maximization.

IRL recovers a reward function from observed trajectories
from expert policy πE under the assumption that the agent
was (softly) maximizing the induced expected long-term
return. Previous work solved this problem based on different
approaches, such as e.g. Max Entropy IRL (Ziebart et al.,
2008).

2.2. Action-value Iteration

We focus on the case of finding the optimal policy via model-
based Action-value Iteration. The Q-function, represented
by a table with entries for every state and action, gets up-
dated in every iteration k based on the Bellman optimality
equation with a given transition modelM:

Qk(st, at)← rt + γmax
a

Est+1∼M[Qk−1(st+1, a))].

Figure 1. Response-preparation task in a reinforcement learning
setting. A rat acts in a behavioral chamber with a lever and a sugar
port. Our proposed framework infers an intrinsic scalar reward
function of the rats behavior via closed-form inverse reinforcement
learning and maps neural signals to these rewards.

3. Method
In this section, we describe how to infer the scalar under-
lying reward function of a rats behavior, as well as the su-
pervised approximation of this scalar reward as a weighted
combination of neural signals.

3.1. Estimation of intrinsic reward

We assume that the subject follows a stochastic policy πE

with an underlying Boltzmann distribution according to its
optimal action-value function which is unknown.

As proposed in (Kalweit et al., 2020), defining:

ηas := log(πE(a|s))− γmax
a′

Es′∼M[Q∗(s′, a′)],

leads to the immediate reward:

r(s, a) = ηas +
1

n− 1

∑
b∈Aā

r(s, b)− ηbs,

where Aā := A \ {a}. The resulting system of linear
equations can be solved with least squares. We start by
estimating the immediate reward for all terminal states and
then go through the MDP in reverse topological order based
on modelM. As can be seen in Section 5, the Boltzmann
distribution induced by the optimal action-value function
on this learned reward is equivalent to the arbitrary demon-
strated behavior distribution (proof in (Kalweit et al., 2020)).
IAVI thus returns a scalar reward function which precisely
encodes the recorded behavior of subject rats as an interme-
diate result which can then be used for neural decoding.
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Figure 2. Transition graph for the MDP of the described response-
preparation task. In the initial state, the rat presses the lever. If the
rat does not release, it ends up in the next state, where the time is
discretized with 0.2 s steps. If the rat relases after the cue in a time
span of 0.6 s, the trial was a success and it gets rewarded.

3.2. Mapping of neural spiking to intrinsic reward

As second step, we map recorded neural spikes to the found
intrinsic reward function in order to draw conclusions about
the recorded behavior based on neural activity. We hence
assume the immediate reward function to be a projection
r(s, a) = ρ(Φ(s)|θρ), where ρ is a parameterized function
of features with parameters θρ, e.g. a linear combination
or a neural network, and Φ(s) = (Φ1(s), . . . ,Φm(s))> the
vector of m features based on the recordings of m neurons,
such as the mean. We can fit parameters θρ according to the
class of function approximator, e.g. either by least squares
or gradient descent, on the difference between reward and
prediction. The mapping can then be used to predict the
resulting behavior based on neural spiking Φ(s) in new
situations. Further, we can simulate how rats will behave if
the spiking of certain neurons is inhibited or changed.

4. Experimental Design
In this section, we explain the experimental design.

4.1. Response-Preparation Task

A total of six rats (two for the neural recordings used in
our experiments and four for the real-world inhibition ex-
periments) were placed into a behavioral chamber with one
lever and a reward port (see Figure 1). To complete the task
and get the reward (sucrose water), the rats had to hold the
lever for 1.6 s until a vibration to the paw occurs as a cue to
release. The trial was considered correct if the rat released
within 0.6 s. The rats were only rewarded for correct trials
and were trained for 40 sessions over the course of two

months. The data set comprises recordings of 30 neurons
and 104 trials of rat 1 and 33 neurons and 184 trials of rat 2.

4.2. MDP Formulation

We model a simplified version of the response-preparation
task as Markov Decision Process (MDP), where we
consider the task after the press of the lever. The MDP
is defined as a four-tuple 〈S,A,M, r〉, where the set
of states is defined by S = {0.0 s, 0.2 s, . . . , 1.2 s} ∪
{Before Cue,Cue,After Cue,After Cue1,After Cue2, . . . ,
Time to Release,Late Release} ∪ {Success,Failure}, dis-
cretizing the time into chunks of 0.2 s. In every state, the rat
can pick an action from action space A = {stay, release}.
We define the MDP to have deterministic transitions. An
overview is given in Figure 2. In the following, we consider
the reward function r : S ×A 7→ R to be unknown.

4.3. Inhibition

To inhibit neurons in vivo, we expressed the light
gated inhibitory opsin enhanced Natronomonas pharaonis
Halorhodopsin (eNpHr3.0 (Gradinaru et al., 2008)) specif-
ically targeting RFA to CFA projecting neurons in four
trained rats. For this we injected a local Adeno Associ-
ated Virus (AAV)-based vector carrying the cre-dependent
eNpHr construct into RFA and a retrograde traveling viral
vector (retroAAV (Tervo et al., 2016)) providing cre recom-
binase into CFA. Thereby the opsin is only expressed in
neurons projecting from RFA to CFA. Experiments were
conducted 12 weeks after injection to allow high levels of
opsin expression. In 25% of the trials, continuous light was
delivered to RFA via optical fibers during the vibration cue.

4.4. Models

In the inhibition experiments, we compare NeuRL to real-
world evidence. In the behavior prediction experiments,
we compare NeuRL to a random controller, logistic regres-
sion (LR) and non-linear classification via neural-networks
(NNC), which map directly from neural signal features to
actions. For NeuRL and NNC, we optimized the hyperpa-
rameters with random search according to the configuration
space in Table 1 with 500 sampled configurations each.

Hyperparameter Configuration Space

#updates [5000, 10000, 20000]
batch size [16, 64, 256]

hidden dim [50, 100, 200]
num layers [2∗,3∗∗, 4]

learning rate [10−3,10−4, 10−5]

Table 1. Configuration space for hyperparameter optimization. In-
cumbent in bold for (*) rat 1 and (**) rat 2.
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Rat 1 Rat 2
Exact Match Near 1 Match Near 2 Match Exact Match Near 1 Match Near 2 Match

NeuRL 0.36(±0.11) 0.49(±0.13) 0.59(±0.09) 0.44(±0.09) 0.62(±0.06) 0.70(±0.11)

NNC 0.21(±0.09) 0.28(±0.12) 0.37(±0.17) 0.34(±0.10) 0.46(±0.09) 0.52(±0.10)
LR 0.15(±0.07) 0.19(±0.10) 0.29(±0.08) 0.33(±0.09) 0.41(±0.08) 0.47(±0.10)

Random 0.04(±0.07) 0.20(±0.13) 0.29(±0.15) 0.12(±0.06) 0.38(±0.07) 0.46(±0.10)

Table 2. Mean prediction accuracy of release time step for 10-fold cross validation on subject rat 1 and 2.

5. Experimental Results
We first learn the intrinsic reward functions based on the
recorded trajectories and the above defined MDP formula-
tion via IAVI. As can be seen in Figure 3, the learned and
the real release distributions are identical, which shows that
the scalar reward functions being found precisely explain
the release distribution for each rat.
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Figure 3. Release distribution, learned reward and the resulting
Boltzmann distribution after applying Q-learning on the reward for
(top) rat 1 and (bottom) rat 2 over all trials. Dashed lines indicate
the time span in which the rats ought to release.

For the inhibition simulation, we calculate the feature ma-
trices accumulating the neural spikings by using an incre-
mental mean over all trials for each rat and compute the
weights θ via least squares, assuming a linear combination
of the state features as described in Section 3.2. We then
randomly sample 60% of neurons projecting from RFA to
CFA (which corresponds to the expected efficacy of viral
manipulation in practice) and set the respective features
within the allowed response window to zero (analogously
to the real-world inhibition experiments). For each rat, we
derive a stochastic policy from the Boltzmann distributions
after Q-learning on the inhibition rewards induced by the
modified feature matrices and sample releases from these
policies. The resulting reaction times (time between cue and
release in correct trials) for real and simulated inhibitions
are summarized for all rats in Figure 4. The model provided
by NeuRL captures the tendency towards higher reaction
times found in the real-world experiments consistently for
both rats. The difference in absolute numbers result from
different subject rats for neural recording (basis for NeuRL)

and real-world inhibition experiments.

To evaluate the performance of release behavior prediction,
we split the data set into different training and test sets using
10-fold cross-validation over all trials of a rat. We take the
neural spikings per time-step and trial as features to allow
for per-trial prediction and use a neural network as function
approximator. Since the resulting features are very sparse,
we further append the time spent since trial initiation to
the feature space. We compare NeuRL to NNC, LR and a
random controller, considering a release prediction in a trial
whenever a resulting controller assigns a probability of > ε
(here we set ε = 0.6) to the action of release in a certain
time step. Results are shown in Table 2. NeuRL is able to
correctly predict the releases in the test set by 36% and 44%,
respectively, for the two rats and exceeds the performance
of all baselines by a large margin, also when considering
near matches within one or two time steps.
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Figure 4. Mean reaction times and standard error for (left) rat batch
1 without and with simulated inhibition of 60% of RFA to CFA
neurons and (right) rat batch 2 with and without real inhibition. In
both cases, the reaction time increases with inhibition.

6. Conclusion
We introduced NeuRL, a two-step neural decoding method
that first infers the true underlying immediate scalar reward
function of a subject and then maps recorded neural spiking
to this immediate reward. In simulated inhibition, our model
was able to recover an effect of higher reaction times for the
inhibition of neurons projecting from RFA to CFA shown in
real-world experiments. In per-trial behavior prediction, our
model achieved by far the best results, underlining the im-
portance of reward prediction. Thus, our approach offers a
novel and powerful interpretation tool for complex neuronal
data, increasing the quality of behavioral predictions.
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