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Abstract

We introduce a new dataset called Synthetic
COVID-19 Chest X-ray Dataset ! for training ma-
chine learning models. The dataset consists of
21,295 synthetic COVID-19 chest X-ray images
to be used for computer-aided diagnosis. These
images, generated via an unsupervised domain
adaptation approach, are of high quality. We find
that the synthetic images not only improve per-
formance of various deep learning architectures
when used as additional training data under heavy
imbalance conditions (skew > 90), but also detect
the target class with high confidence. We also find
that comparable performance can also be achieved
when trained only on synthetic images. Further,
salient features of the synthetic COVID-19 im-
ages indicate that the distribution is significantly
different from Non-COVID-19 classes, enabling
a proper decision boundary. We hope the avail-
ability of such high fidelity chest X-ray images of
COVID-19 will encourage advances in the devel-
opment of diagnostic and/or management tools.

1. Introduction

Recent studies have shown that chest radiography images
such as chest X-rays (CXR), performed on patients with
COVID-19 when they arrive at the emergency room, can
help doctors determine who is at higher risk of severe ill-
ness and intubation (Ai et al., 2020; Huang et al., 2020).
Automatic interpretation of chest radiography images such
as CXR using computational approaches not only helps
healthcare organizations save time and money, but also pro-
vides superior patient care and more importantly it can save
lives (Ng et al., 2020).

Several computational approaches for the detection of
COVID-19 cases from chest radiography images have been
recently proposed, including tailored convolutional neural
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Figure 1. Illustration of the data generation process based on un-
paired image-to-image translation. CXR images are translated
from Non-COVID-19 (i.e. Normal or Pneumonia) to COVID-19
and then back to Non-COVID-19 via cycle-consistency.

network (CNN) architectures (Karim et al., 2020; Wang
et al., 2020) and transfer learning based methods (Kassani
et al., 2020; Narin et al., 2021; Li et al., 2020; Farooq &
Hafeez, 2020). While promising, the predictive performance
of these deep learning based approaches depends heavily on
the availability of large amounts of curated and annotated
data. Over the past few years, there have been several ef-
forts to build large-scale annotated datasets for CXRs and
make them publicly available to the global research com-
munity (Johnson et al., 2019; Wang et al., 2017; Bustos
et al., 2020). At the time of writing, there exists, however,
only one annotated COVID-19 X-ray Image Data Collec-
tion (Cohen et al., 2020), which is a curated collection of
CXR images of patients who are positive or suspected of
COVID-19 or other viral and bacterial pneumonia. This is
largely attributed to the rare nature of the radiological find-
ing, legal, privacy, technical, and data-ownership challenges.
While the COVID-19 Image Data Collection contains pos-
itive examples of COVID-19, the negative examples were
acquired from publicly available sources (Wang et al., 2017)
and merged together for computational analysis. This fu-
sion of multiple datasets results in predominantly negative
examples with only a small percentage of positive ones (i.e
COVID-19), giving rise to a class imbalance problem (John-
son et al., 2019; Wang et al., 2017; Bustos et al., 2020).
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2. Methods

Identifying COVID-19 in a CXR image can be regarded as
an image classification problem. We consider two binary
classification tasks, namely Normal vs. COVID-19 and
Pneumonia vs. COVID-19, for which we want to accurately
identify COVID-19. For training the classification and the
generative models, we use COVID-19 samples from the
COVID-19 Image Data Collection (Cohen et al., 2020), and
Normal and Pneumonia samples from the RSNA Pneumonia
Detection Challenge (Wang et al., 2017).

In order to address the class imbalance problem, we recently
proposed an unsupervised domain adaptation algorithm to
synthesize under-represented class samples (i.e COVID-19
CXR images) from the over-represented ones (i.e Normal or
Pneumonia CXR images) using unpaired image-to-image
translation (Zunair & Hamza, 2021; 2020). The key idea
is to train a cycle-consistent generative model (Zhu et al.,
2017) on unpaired samples of two domains (Non-COVID-
19 and COVID-19 in our case) with the goal of learning
mapping functions between them. We train two translation
models, which learn the mapping from Normal to COVID-
19 and Pneumonia to COVID-19. After training, given a
Non-COVID-19 CXR image (i.e. Normal or Pneumonia) as
input, the generative model translates such that the image
has representative features of COVID-19. An illustration of
the data generation process in shown in Figure 1.

We generate 16,537 and 4,758 COVID-19 CXR images for
Normal vs. COVID-19 (denoted Gy ) and Pneumonia vs.
COVID-19 (denoted Gp¢) tasks, respectively.

3. Results

We report results in Figure 2 for Normal vs. COVID-19
and Pneumonia vs. COVID-19 tasks when using Gy ¢, in-
stead of Gpc, as additional training data across various deep
learning architectures. It is evident that for all architectures,
adding the synthetic data significantly improves COVID-19
detection performance. For Normal vs. COVID-19, the
performance is much better when adding G ¢ instead of
Gpc. We hypothesize that this is due largely to the fact that
the number of images in G ¢ is much larger.

In Figure 3, we display the two-dimensional Uniform Mani-
fold Approximation and Projection (UMAP) embeddings of
the features with the objective of visualizing the difference
between the original and synthetic data. Figure 3(a) shows
that the original examples exhibit low interclass variation
and consist of outliers. In Figures 3(b) and 3(c), the syn-
thetic samples are in a different distribution in the feature
space. While the UMAP embeddings may not be interpreted
as a justification that the synthetic examples actually consist
of COVID-19 symptoms from a clinical perspective, it is,
however, important to note that the distribution of the syn-
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Figure 2. COVID-19 detection performance results on Normal vs.
COVID-19 (top) and Pneumonia vs. COVID-19 (buttom) test sets
when trained on real data, and on combined real and synthetic data.
For both tasks, synthetic data improves detection performance of
the different classification models.

thetic images is significantly different than that of normal
images; thereby enabling a proper decision boundary.

To visually explain the decisions made by the model in the
sense that why an X-ray image is classified as COVID/Non-
COVID, we use the gradient-weighted class activation map
(Grad-CAM) to generate the saliency maps that highlight
the most influential features affecting the predictions. Since
the convolutional feature maps retain spatial information
and that each pixel of the feature map indicates whether
the corresponding visual pattern exists in its receptive field,
the output from the last convolutional layer of the deep
neural network shows the discriminative region in an im-
age. To distinguish between the predicted COVID-19 and
Non-COVID-19 images, we visualize the saliency maps
for images that are correctly classified as COVID-19 and
Non-COVID-19 (normal) by the proposed model. As shown
in Figure 4, the class activation maps for Non-COVID-19
(normal) demonstrate high activations for regions around
the lungs, suggesting that there are no prediction features
indicating that the disease is present. For most of the images
that are correctly classified as COVID-19, the highlighted
regions are within the lungs. Notice that in some cases, the
model only highlights a specific part of the lung (e.g. left
or right), which shows that COVID-19 features are present
only on one side.
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Figure 3. Two-dimensional UMAP embeddings: (a) Normal vs. COVID-19; (b) Normal vs. COVID-19 + Gn¢; (c) Normal vs. COVID-19
+ Gne + Gpe; Here, G1 and G2 denote Gy ¢ and Gpe, respectively.

Figure 4. Saliency maps for the correctly classified COVID-19 (top two rows) and Non-COVID-19 (bottom two rows) images by the
proposed model. Notice that for images that are classified as COVID-19, our model highlights the areas within the lungs, whereas for
Non-COVID-19 images, the most important regions are around the lungs.

4. Conclusion find that using these images can alleviate heavy class imbal-
ance problems across multiple deep learning architectures
for COVID-19 detection. Salient features also suggest that
the distribution of synthetic images are different from other
classes, and hence enable a proper decision boundary.

We release a publicly available dataset consisting of 21,295
synthetic COVID-19 CXR images to be used for training
machine learning models in computer-aided diagnosis. We
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