Multi-Scale Representation Learning on Proteins

Charlotte Bunne ' Vignesh Ram Somnath“' Andreas Krause '

Abstract

Proteins are fundamental biological entities me-
diating key roles in cellular function and disease.
This paper introduces a multi-scale graph con-
struction of a protein — HOLOPROT — connect-
ing surface to structure and sequence. The sur-
face captures coarser details of the protein, while
sequence as primary component and structure —
comprising secondary and tertiary components
— capture finer details. Our graph encoder then
learns a multi-scale representation by allowing
each level to integrate the encoding from level(s)
below with the graph at that level. We test the
learned representation on different tasks, (i.) lig-
and binding affinity (regression), and (ii.) protein
function prediction (classification). On the re-
gression task, contrary to previous methods, our
model performs consistently and reliably across
different dataset splits, outperforming all base-
lines on most splits. On the classification task, it
achieves a performance close to the top perform-
ing model while using 10x fewer parameters. To
improve the memory efficiency of our construc-
tion, we segment the multiplex protein surface
manifold into molecular superpixels, and substi-
tute the surface with these superpixels at little to
no performance loss.

1. Introduction

Protein design and engineering has become a crucial com-
ponent of pharmaceutical research, finding application in a
wide variety of diagnostic and industrial settings. Besides
understanding the design principles determining a protein’s
structure and function, current efforts seek to further dis-
cover proteins with properties useful for technological or
therapeutic applications. To efficiently guide the search in
the vast protein design space, we need to be able to robustly
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predict properties of a candidate protein (Yang et al., 2019).

To achieve this, representations incorporating the complex
nature of proteins are required. Proteins consist of amino
acids, organic molecules linked by peptide bonds forming
a linear sequence. Each of the twenty amino acids carries
a unique side chain, giving rise to an incomprehensibly
large combinatorial space of possible protein sequences.
The primary sequence drives the folding of polymers — a
spontaneous process guided by hydrophobic interactions,
formation of intramolecular hydrogen bonds, and van der
Waals forces into a unique three-dimensional structure. The
resulting shape and surface manifold with rich physiochem-
ical properties carry essential information for understanding
function and potential molecular interactions.

Previous methods typically only consider an individual sub-
set within these scales, focusing on either sequence (Oztiirk
et al., 2018; Hou et al., 2018), three-dimensional structure
(Hermosilla et al., 2021; Derevyanko et al., 2018) or surface
(Gainza et al., 2020). Two proteins with similar sequences
can fold into entirely different conformations. While these
proteins might catalyze the same type of reactions, their
behavior to specific inhibiting drugs might be divergent. In-
teraction between proteins and ligands, on the other hand,
is controlled by molecular surface contacts (Gainza et al.,
2020). Molecular surfaces, determined by subjacent amino
acids, are fingerprinted with patterns of geometric and chem-
ical properties, and thus their integration in protein repre-
sentations is crucial.

In this work, we present a novel multi-scale graph repre-
sentation which integrates and connects the complex nature
of proteins across all levels of information. HOLOPROT
consists of a surface and structure layer (both represented
as graphs) with explicit edges between the layers. Our con-
struction is guided by the intuition that propagating informa-
tion from surface to structure would allow each residue to
learn encodings reflective of not just its immediate residue
neighborhood, but also the higher-level geometric and chem-
ical properties that arise from interactions between a residue
and its neighborhood. The associated multi-scale encoder
then learns representations by integrating the encoding from
the layer below, with the graph at that layer (§ 2). Such
multi-scale representations have been previously used in
molecular graph generation (Jin et al., 2020) with impres-
sive results.
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Figure 1. Molecular Superpixels and Surface Features of the HIV-1 Protease (PDB ID: 2AVQ). a. Molecular superpixels, indicated

by different colors (k = 20), and the corresponding surface features, i.e., b. hydropathy, c.

shape index, and d. free electrons.

As highlighted, molecular superpixels are spatially compact and overlap with surface regions dominated by single features such as
hydrophobic patches while capturing coherent areas across all surface features. The protein complex contains 198 residues.

We further improve the memory efficiency of our construc-
tion by segmenting the large and rich protein surface into
molecular “superpixels”, summarizing higher-level finger-
print features and motifs of proteins. Substituting the surface
layer with these superpixels results in little to no perfor-
mance degradation across the evaluated tasks. The concept
of molecular superpixels might be of interest beyond our
model (§ 3). We demonstrate the model’s range of applica-
tions by deploying it to regression tasks, e.g., inference of
protein ligand binding affinity, and classification tasks, i.e.
enzyme-catalyzed reaction classification (§ 4).

2. Multi-Scale Protein Representation

In this section, we describe our multi-scale graph construc-
tion and the associated encoder. We represent a protein P
as a graph Gp with two layers capturing different scales:
(i.) Surface layer. This layer captures the coarser rep-
resentation details of a protein. The protein surface
is generated using the triangulation software MSMS
(Connolly, 1983; Sanner et al., 1996). We represent
this layer as a graph Gs, where each surface node us
has a feature vector f,,; denoting its charge, hydropho-
bicity and local curvature (Gainza et al., 2020). Two
surface nodes (us, vs) have an edge if they are part of
a triangulation. Each surface node additionally has a
residue identifier 7, indicating the amino acid residue
it corresponds to. Multiple surface nodes can have the
same residue identifier.

(ii.) Structure layer. This layer captures the finer repre-
sentation details of a protein. A protein typically has
four structural levels: (i.) primary structure (sequence),
(ii.) secondary structure (a-helices and [3-sheets), (iii.)
tertiary structure (3D structure) and (iv.) quaternary
structure (complexes) (Fout et al., 2017). We represent
this layer as a graph Gp, where each node ug corre-
sponds to a residue r. Two nodes (ug,vp) have an
edge in Gp if the C,, atoms of the two nodes occur
within a certain distance of each other. Distance based
thresholding ensures that different structural levels are
implicitly captured in the neighborhood of a node uz.

We further introduce edges from the surface layer to the
structure layer in order to propagate information between
them. Specifically, we introduce a directed edge between a
surface node us and a backbone node ug if they both have
the same residue identifier r. Typically, we have between
20-40 surface nodes {us} that map to the same structure
node ug. This gives us the multi-scale graph which is then
encoded by our multi-scale message passing network. De-
tails on the features used for both the structure and surface
layer can be found in § E.1.

2.1. Multi-Scale Encoder

Our multi-scale message passing network uses one mes-
sage passing neural network (MPN) for each layer in the
multi-scale graph (Lei et al., 2017; Gilmer et al., 2017).
This allows us to learn structured representations of each
scale, which can then be tied together through connections
between the scales. Before detailing the remainder of the
architecture, we introduce some notational preliminaries.
For simplicity, we denote the MPN encoding process as
MPNy () with parameters §. We denote MLPy(x,y) for
a multi-layer perceptron (MLP) with parameters 6, whose
input is the concatenation of x and y, and MLPy(x) when
the input is only x. We also denote the residue identifier of
anode u with id(u), and the neighbors of a node u as N (u).
The details of the MPN architecture are listed in the § B.

Surface Message Passing Network We first encode the
surface layer Gs of the multi-scale protein graph Gp. The
inputs to the MPN are node features f,,; and edge features
fi.svs of Gs. For more details on the input features used for
surface nodes and edges, refer to § E.1. The MPN (with
parameters fg) propagates messages between the nodes
for K iterations, and outputs a representation h,, for each
surface node ug,

{hus} = MPN@S (gS’ {fus }7 {fusvs }USGN(US))~

Structure Message Passing Network For each node ug
in the structure layer G, we first prepare the input to the
MPN (with parameters 63) by using an MLP (with param-
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eters 6) on the concatenated version of its initial features
f.; and the mean of the surface node vectors with the same
residue identifier S = {h,|id(us) = id(ug)}

s = MLPy(f, 5, s bus/|s)).

Given the edge features f,,,,,, we then run K iterations of
message passing, to compute the representations h,,,, for
each structure node ug,

{hus} = MPN@B (ng {qu}a {fUBUB}vBEN(uB))'

The graph representation cg,, is an aggregation of structure
node representations,
> hy, (1)

up€gn

2.2. Task Specific Training

This multi-scale encoding allows us to learn a structured
representation of a protein tying different scales together,
which can then be utilized for any downstream task. In this
work, we evaluate our method on two rather distinct tasks
(i.) protein-ligand binding affinity regression, and (ii.) en-
zyme-catalyzed reaction classification. The architectural de-
tails for both downstream tasks are described below. These
modules can be adapted and modified in order to utilize
HOLOPROT for other use cases.

Protein-Ligand Binding Affinity Protein-ligand binding
affinity prediction depends on the interaction of a protein,
encoded using the HOLOPROT framework, and a corre-
sponding ligand, in most cases small molecules. To encode
the ligand represented as a graph G, we use another MPN
(with parameters 6) and aggregate its node representations
to obtain a graph representation cg,. We concatenate the
graph representations cg,, (Equation 1) of the protein and
cg, of the ligand, and use that as input to a MLP (with pa-
rameters ¢) to obtain predictions, s, = MLP,(cg,,cg, ).
The model is trained by minimizing the mean squared error.

Enzyme-Catalyzed Reaction Classification We use the
graph representation cg,, of the protein obtained via HOLO-
PROT as the input to a MLP (with parameters ¢) to ob-
tain the prediction logits, pr, = MLP4(cg). The model is
trained by minimizing the cross-entropy loss.

3. Superpixels on Molecular Surfaces

Protein surface manifolds are complex and represented via
large meshes. In order to improve the computational and
memory efficiency of our construction, we introduce the no-
tion of molecular superpixels. In order to apply the segmen-
tation principle to three-dimensional molecular surfaces, we
employ graph-based superpixel algorithms on triangulated
surface meshes. The superpixel representation of the protein

surface needs to satisfy several requirements, as (i.) molec-
ular superpixels should not reduce the overall achievable
performance of HOLOPROT, and (ii.) molecular superpixels
need to form geometrically compact clusters and overlap
with surface regions that are coherent in physiological sur-
face properties, e.g., capture hydrophobic binding sides or
highly charged areas. Popular graph-based segmentation
tools such as Felzenszwalb and Huttenlocher (2004, FH),
mean shift (Comaniciu and Meer, 2002), and watershed
(Vincent and Soille, 1991), however, produce non-compact
superpixels of irregular sizes and shapes. By posing the
segmentation task as a maximization problem on a graph
maximizing over (i.) the entropy rate of the random walk
on the surface graph Gs = (Vs, Es) favoring the formation
of compact and homogeneous clusters, and (ii.) a balancing
term encouraging clusters with similar sizes, the entropy
rate superpixel (ERS) segmentation algorithm (Liu et al.,
2011) outperforms previous methods across different tasks
(Stutz et al., 2018) and achieves the desired properties of
molecular superpixels.

In order to incorporate geometric and chemical features
of the surface Fs, we extend the surface graph Gs =
(Vs, Es) with a non-negative similarity measure w, given
as wij = D e |, £y, | for nodes v; and v; if connected
by an edge e;;. We simulate a random walk X = {X;|t €
T,X: € Vs} on a protein surface mesh, where the tran-
sition probability p;; between two nodes v; and v; is de-
fined as p;; = P(Xi41 = vj| Xy = v;) = wii/w,;, Where
Wi = ) .., ces Wik-The corresponding stationary distribu-
tions of nodes Vs are given by

T
o Ti wy, W w|vs|
o= (1, oy pyys)) =, ——
wr wr wr

Molecular superpixels are then defined by a subset of edges
M C &g such that the resulting graph, Gs = (Vs, M),
contains exactly k connected subgraphs. Computing molec-
ular superpixels is achieved via optimizing the objective
function with respect to the edge set M

max — Z i Zp” M) log (pi;(M))

(i.) entropy rate

_ZPZM

(ii.) balancing function

st. M C Esand nag > k,

)10g (pz,, (7)) — nm

where n ¢ is the number of connected components in the
graph, pz,, denotes the distribution of cluster memberships
Z ., and A > 0 is the weight of the balancing term. Both
terms satisfy monotonicity and submodularity and can thus
be efficiently optimized based on techniques from submod-
ular optimization (Nemhauser et al., 1978). For further
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Table 1. Protein-Ligand Binding Affinity Prediction Results. Comparison of the predictive performance of ligand binding affinity
using the PDBbind dataset (Liu et al., 2017) of HOLOPROT against other methods.

Model # Params Scaffold Sequence Identity (60 %)
RMSE Pearson Spearman RMSE Pearson Spearman
Oztiirk et al. (2018) 1.93 M 1.908 +0.145 0.384 £0.014 0.387 £ 0.016 1.762 +0.261  0.666 +0.012  0.663 & 0.015
Bepler and Berger (2019) 48.8 M 1.864 +0.009 0.269 +0.002 0.285 £+ 0.019 1.891 +0.004 0.249 £0.006 0.275 £ 0.008
Rao et al. (2019) 93.0M 1.680 + 0.055 0.487 £0.029 0.462 £ 0.051 1.633 £0.016 0.568 +£0.033 0.571 £ 0.021
Townshend et al. (2020) - - - - 1.450 £ 0.024 0.716 £ 0.008 0.714 £ 0.009
Townshend et al. (2020) - - - - 1.493 £ 0.010 0.669 £0.013  0.691 £ 0.010
Gainza et al. (2020) 0.62 M 1.583 +0.132 0416 +£0.111 0.412 £0.126 1.426 £ 0.017 0.709 £ 0.008 0.701 £ 0.011
Hermosilla et al. (2021) 5.80 M 1.592 £0.012 0.365 £ 0.024 0.373 £ 0.019 1.473 £0.024 0.667 £0.011 0.675 £ 0.019
HoLOPROT () 1.44M 1.523 +£0.028 0.489 +£0.019 0.491 £+ 0.020 1.365 + 0.038  0.749 + 0.014  0.742 + 0.011
HOLOPROT (o) 1.28M 1.516 = 0.014  0.491 £ 0.016 0.493 + 0.014 1.416 £0.022 0.724 £0.011  0.715 £ 0.006
Table 2. Enzyme-Catalyzed Reaction Classification Results
Comparison of performance of HOLOPROT against other methods. Tasks and Datasets To study protein-ligand binding affin-

Model Parameters Reaction Class
Accuracy
Hou et al. (2018) 41.7M 70.9 %
Bepler and Berger (2019) 31.7M 66.7 %
Rao et al. (2019) (Transformer) 384 M 69.8 %
Kipf and Welling (2017) 1.0M 67.3 %
Derevyanko et al. (2018) 6.0 M 78.8 %
Elnaggar et al. (2020) 420.0 M 72.2 %
Hermosilla et al. (2021) 9.8 M 87.2 %
HOLOPROT (@) 0.64 M 77.8 %
HOLOPROT (¢) 0.64 M 78.9 %

full surface ¢ molecular superpixels

details on the entropy rate superpixel algorithm, see Liu
etal. (2011).

A molecular superpixel m comprising k surface vertices
is then given as f,, = (f,,,....f,,) forall f € Fs. We
summarize the feature representation of each molecular su-
perpixel via the graph Gog = (Var, Eaq), Where each node
m € V, is represented via (mean(f,,), std(f,,), max(f,,),
min(f,,)) for all f € Fs and an edge e € &£, via the
Wasserstein distance between neighboring superpixels.

Figure 1 demonstrates molecular superpixels for the enzyme
HIV-1 protease (Brik and Wong, 2003). Besides being
spatially compact, superpixels overlap with surface regions
dominated by single features such as hydrophobic patches,
while capturing coherent areas across all surface features.
Further examples of superpixels are displayed in § D.2.

4. Evaluation

We evaluate our method on two representative tasks, i.e.,
regression of the binding affinity between proteins and
their ligands and classification of enzyme-catalyzed reac-
tion types. We compare HOLOPROT against sequence-,
structure- and surface-based methods described in § A.

ity prediction we use the PDBBIND database (version 2019)
(Liu et al., 2017) which is a collection of experimentally
measured binding affinity data for all types of biomolecu-
lar complexes deposited in the Protein Data Bank (Berman
et al., 2000). After quality filtering for resolution and sur-
face construction, the refined subset comprises a total of
4,709 biomolecular complexes. We split the dataset into
training, test and validation split based on scaffolds of the
corresponding ligands (scaffold) and a 60% sequence iden-
tity threshold (identity 60%) to limit homologous ligands or
proteins appearing in both train and test sets.

Enzyme Commission (EC) numbers constitute an ontologi-
cal system with the purpose of defining and organizing en-
zyme functions (Webb, 1992). The second task thus aims at
predicting the enzyme-catalyzed reaction class of a protein
based on according to all four levels of the EC number. The
dataset comprises a total of 37,428 proteins from 384 EC
numbers, containing 29, 215 instances for training, 2, 562
instances for validation, and 5, 651 for testing. For details,
we refer to Hermosilla et al. (2021, § C).

Evaluation Metrics We quantitatively analyze the bind-
ing affinity prediction by monitoring the root mean squared
error (RMSE), Pearson, and Spearman correlation coef-
ficients. The performance of enzyme-catalyzed reaction
classification is measured via the accuracy.

Results Table 1 and 2 show results on ligand binding affin-
ity and enzyme reaction class prediction. On the regression
task, HOLOPROT (@, ) outperform all baselines. On the
classification task, while unable to outperform the current
state of the art method (Hermosilla et al., 2021), HOLO-
PROT shows equivalent results to methods with ten times
more parameters. Substituting the surface () with molec-
ular superpixels (#) results in little to no performance loss,
suggesting that molecular superpixels capture meaningful
biological motifs.
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5. Conclusion

In this work, we present a novel multi-scale protein graph
construction, HOLOPROT, which integrates finer and coarser
representation details of a protein by connecting sequence
and structure with surface. We further establish molecular
superpixels, which capture higher-level fingerprint motifs on
the protein surface, improving the memory efficiency of our
construction without reducing the overall performance. We
validate HOLOPROT’s effectiveness and versatility through
representative tasks on protein-ligand binding affinity and
enzyme-catalyzed reaction class prediction. While being sig-
nificantly more parameter-efficient, HOLOPROT performs
consistently well across different tasks and dataset splits,
partly outperforming current state-of-the-art methods. This
will potentially be of great benefit and advantage when
working with datasets of reduced size, e.g., comprising ex-
periments on mutational fitness of proteins, thus opening
up new possibilities within protein engineering and design,
which we leave for future work.

6. Acknowledgments

This project received funding from the Swiss National
Science Foundation under the National Center of Compe-
tence in Research (NCCR) Catalysis under grant agreement
51NF40 180544. Moreover, we thank for their Mojmir
Mutny and Clemens Isert for their valuable feedback.

References

N. A. Baker, D. Sept, S. Joseph, M. J. Holst, and J. A. Mc-
Cammon. Electrostatics of nanosystems: application to
microtubules and the ribosome. Proceedings of the Na-
tional Academy of Sciences, 98(18):10037-10041, 2001.

F. Baldassarre, D. Menéndez Hurtado, A. Elofsson, and
H. Azizpour. GraphQA: protein model quality assessment
using graph convolutional networks. Bioinformatics, 37
(3), 2021.

G. W. Bemis and M. A. Murcko. The properties of known
drugs. 1. molecular frameworks. Journal of medicinal
chemistry, 39(15):2887-2893, 1996.

T. Bepler and B. Berger. Learning Protein Sequence Embed-
dings using Information From Structure. In International
Conference on Learning Representations (ICLR), 2019.

H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N.
Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne. The
Protein Data Bank. Nucleic Acids Research, 28(1), 2000.

L. Biewald. Experiment Tracking with Weights and Biases,
2020. URL https://www.wandb. com/.

Blender Online Community. Blender - a 3d modelling and
rendering package, 2018. URL http://www.blender.
org.

A. Brik and C.-H. Wong. HIV-1 protease: mechanism and
drug discovery. Organic & Biomolecular Chemistry, 1
(1), 2003.

V. Cantoni, R. Gatti, and L. Lombardi. Segmentation of
SES for Protein Structure Analysis. In Bioinformatics,
2010.

V. Cantoni, R. Gatti, and L. Lombardi. 3D Protein Surface
Segmentation through Mathematical Morphology. In In-
ternational Joint Conference on Biomedical Engineering
Systems and Technologies. Springer, 2011.

D. Comaniciu and P. Meer. Mean Shift: A Robust Approach
Toward Feature Space Analysis. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 24(5), 2002.

M. L. Connolly. Solvent-accessible surfaces of proteins and
nucleic acids. Science, 221(4612), 1983.

A. Dalkiran, A. S. Rifaioglu, M. J. Martin, R. Cetin-Atalay,
V. Atalay, and T. Dogan. ECPred: a tool for the prediction
of the enzymatic functions of protein sequences based on
the EC nomenclature. BMC Bioinformatics, 19(1), 2018.

G. Derevyanko, S. Grudinin, Y. Bengio, and G. Lamoureux.
Deep convolutional networks for quality assessment of
protein folds. Bioinformatics, 34(23), 2018.

P. D. Dobson and A. J. Doig. Predicting Enzyme Class
From Protein Structure Without Alignments. Journal of
Molecular Biology, 345(1), 2005.

T. J. Dolinsky, P. Czodrowski, H. Li, J. E. Nielsen, J. H.
Jensen, G. Klebe, and N. A. Baker. Pdb2pqr: expanding
and upgrading automated preparation of biomolecular

structures for molecular simulations. Nucleic acids re-
search, 35(suppl_2):W522-W525, 2007.

A. Elnaggar, M. Heinzinger, C. Dallago, G. Rihawi,
Y. Wang, L. Jones, T. Gibbs, T. Feher, C. Angerer,
D. Bhowmik, et al. ProtTrans: Towards Cracking the
Language of Life’s Code Through Self-Supervised Deep
Learning and High Performance Computing. arXiv
Preprint, 2020.

P. F. Felzenszwalb and D. P. Huttenlocher. Efficient Graph-
Based Image Segmentation. International Journal of
Computer Vision, 59(2), 2004.

M. Fey and J. E. Lenssen. Fast Graph Representation Learn-
ing with PyTorch Geometric. International Conference
on Learning Representations (ICLR), Workshop Track,
2019.


https://www.wandb.com/
http://www.blender.org
http://www.blender.org

Multi-Scale Representation Learning on Proteins

A. Fout, J. Byrd, B. Shariat, and A. Ben-Hur. Protein In-
terface Prediction using Graph Convolutional Networks.
In Advances in Neural Information Processing Systems
(NeurIPS), volume 30, 2017.

P. Gainza, F. Sverrisson, F. Monti, E. Rodola, D. Boscaini,
M. Bronstein, and B. Correia. Deciphering interaction
fingerprints from protein molecular surfaces using geo-
metric deep learning. Nature Methods, 17(2), 2020.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and
G. E. Dahl. Neural Message Passing for Quantum Chem-
istry. In International Conference on Machine Learning
(ICML), 2017.

V. Gligorijevic, P. D. Renfrew, T. Kosciolek, J. K. Leman,
K. Cho, T. Vatanen, D. Berenberg, B. Taylor, 1. M. Fisk,
R.J. Xavier, R. Knight, and R. Bonneau. Structure-Based
Function Prediction using Graph Convolutional Networks.
Nature Communications, 12(1), 2021.

A. Golovin and K. Henrick. MSDmotif: exploring protein
sites and motifs. BMC Bioinformatics, 9(1), 2008.

J. Greer and B. L. Bush. Macromolecular shape and surface
maps by solvent exclusion. Proceedings of the National
academy of Sciences, 75(1), 1978.

R. Hanocka, A. Hertz, N. Fish, R. Giryes, S. Fleishman,
and D. Cohen-Or. Meshcnn: A network with an edge.
ACM Transactions on Graphics (TOG), 38(4):90:1-90:12,
2019.

P. Hermosilla, M. Schifer, M. Lang, G. Fackelmann, P.-
P. Vazquez, B. Kozlikova, M. Krone, T. Ritschel, and
T. Ropinski. Intrinsic-Extrinsic Convolution and Pooling
for Learning on 3D Protein Structures. In International
Conference on Learning Representations (ICLR), 2021.

J. Hou, B. Adhikari, and J. Cheng. DeepSF: deep convolu-
tional neural network for mapping protein sequences to
folds. Bioinformatics, 34(8), 2018.

J. Jiménez, M. Skalic, G. Martinez-Rosell, and G. De Fabri-
tiis. Kpggp: Protein—Ligand Absolute Binding Affinity
Prediction via 3D-Convolutional Neural Networks. Jour-
nal of Chemical Information and Modeling, 58(2), 2018.

W. Jin, R. Barzilay, and T. Jaakkola. Hierarchical gener-
ation of molecular graphs using structural motifs. In
International Conference on Machine Learning, pages
4839-4848. PMLR, 2020.

W. Kabsch and C. Sander. Dictionary of protein secondary
structure: pattern recognition of hydrogen-bonded and
geometrical features. Biopolymers: Original Research
on Biomolecules, 22(12):2577-2637, 1983.

T. N. Kipf and M. Welling. Semi-Supervised Classification
with Graph Convolutional Networks. In International
Conference on Learning Representations (ICLR), 2017.

P. Kohli, P. H. Torr, et al. Robust Higher Order Potentials for
Enforcing Label Consistency. International Conference
on Computer Vision (ICCV), 82(3), 2009.

G. Landrum. RDKit: Open-Source Cheminformatics
Software. 2016. URL https://github.com/rdkit/
rdkit/releases/tag/Release_2016_09_4.

B. Lee and F. M. Richards. The interpretation of protein
structures: estimation of static accessibility. Journal of
Molecular Biology, 55(3), 1971.

T. Lei, W. Jin, R. Barzilay, and T. Jaakkola. Deriving Neu-
ral Architectures from Sequence and Graph Kernels. In
International Conference on Machine Learning (ICML),
2017.

M.-Y. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa. En-
tropy Rate Superpixel Segmentation. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
2011.

Z.Liu, M. Su, L. Han, J. Liu, Q. Yang, Y. Li, and R. Wang.
Forging the Basis for Developing Protein-Ligand Interac-
tion Scoring Functions. Accounts of Chemical Research,
50(2), 2017.

G. Mori, X. Ren, A. A. Efros, and J. Malik. Recovering Hu-
man Body Configurations: Combining Segmentation and
Recognition. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), volume 2, 2004.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An
analysis of approximations for maximizing submodular
set functions. Mathematical programming, 14(1), 1978.

H. Oztiirk, A. Ozgiir, and E. Ozkirimli. DeepDTA: deep
drug—target binding affinity prediction. Bioinformatics,
34(17), 2018.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,
and S. Chintala. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In Advances in
Neural Information Processing Systems (NeurlPS), vol-
ume 32, 2019.

M. Ragoza, J. Hochuli, E. Idrobo, J. Sunseri, and D. R.
Koes. Protein-ligand scoring with convolutional neural
networks. Journal of chemical information and modeling,
57(4):942-957, 2017.


https://github.com/rdkit/rdkit/releases/tag/Release_2016_09_4
https://github.com/rdkit/rdkit/releases/tag/Release_2016_09_4

Multi-Scale Representation Learning on Proteins

R. Rao, N. Bhattacharya, N. Thomas, Y. Duan, X. Chen,
J. Canny, P. Abbeel, and Y. S. Song. Evaluating Protein
Transfer Learning with TAPE. In Advances in Neural
Information Processing Systems (NeurIPS), 2019.

X. Ren and J. Malik. Learning a Classification Model for
Segmentation. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), volume 2, 2003.

M. F. Sanner, A. J. Olson, and J.-C. Spehner. Reduced Sur-
face: An Efficient Way to Compute Molecular Surfaces.
Biopolymers, 38(3), 1996.

M. M. Stepniewska-Dziubinska, P. Zielenkiewicz, and
P. Siedlecki. Improving detection of protein-ligand bind-
ing sites with 3d segmentation. Scientific Reports, 10(1),
2020.

D. Stutz, A. Hermans, and B. Leibe. Superpixels: An
evaluation of the state-of-the-art. Computer Vision and
Image Understanding, 166, 2018.

R. Townshend, R. Bedi, P. Suriana, and R. Dror. End-
to-End Learning on 3D Protein Structure for Interface
Prediction. Advances in Neural Information Processing
Systems (NeurIPS), 32, 2019.

R. J. Townshend, M. Vogele, P. Suriana, A. Derry, A. Pow-
ers, Y. Laloudakis, S. Balachandar, B. Anderson, S. Eis-
mann, R. Kondor, et al. ATOM?3D: Tasks On Molecules
in Three Dimensions. NeurlPS Workshop of Learning
Meaningful Representations of Life (LMRL), 2020.

L. Vincent and P. Soille. Watersheds in Digital Spaces:
An Efficient Algorithm Based on Immersion Simulations.
IEEE Computer Architecture Letters, 13(06), 1991.

E. C. Webb. Enzyme Nomenclature 1992. Recommenda-
tions of the Nomenclature Committee of the International
Union of Biochemistry and Molecular Biology on the
Nomenclature and Classification of Enzymes. Academic
Press, 1992.

K. K. Yang, Z. Wu, and F. H. Arnold. Machine-learning-
guided directed evolution for protein engineering. Nature
Methods, 16(8), 2019.



Multi-Scale Representation Learning on Proteins

Appendix: Multi-Scale Representation Learning on Proteins

A. Related Work

Protein Representation Learning With increasing availability of sequence and structure data, the field of protein
representation learning has advanced rapidly, with methods falling largely in one of the following categories:

Sequence-based methods. One-dimensional amino acid sequences continue to be the simplest, most abundant source
of protein data and various methods have been developed that borrow architectures developed in natural language
processing (NLP). One-dimensional convolutional neural networks have been used to classify a protein sequence into
folds and enzyme function (Hou et al., 2018; Dalkiran et al., 2018), and to predict their binding affinity to ligands
(Oztiirk et al., 2018). Furthermore, methods have applied complex NLP models trained unsupervised on millions of
unlabeled protein sequences and fine-tuned them on different downstream tasks (Rao et al., 2019; Elnaggar et al., 2020;
Bepler and Berger, 2019). Despite being advantageous when only the sequence is available, these methods ignore the
full spatial complexity of proteins.

Structure-based methods. To learn beyond sequences, approaches have been developed, that consider the 3D structure
of proteins. 3D convolutional neural networks have been utilized for protein quality assessment (Derevyanko et al.,
2018), protein contact prediction (Townshend et al., 2019) and protein-ligand binding affinity tasks (Ragoza et al., 2017;
Jiménez et al., 2018; Townshend et al., 2020). An alternate representation treats proteins as graphs, applying graph
neural networks for enzyme classification (Dobson and Doig, 2005), interface prediction (Fout et al., 2017), and protein
structure quality prediction (Baldassarre et al., 2021). Gligorijevic et al. (2021) use a long short term memory cell
(LSTM) to encode the sequence, followed by a graph convolutional network (GCN) (Kipf and Welling, 2017) to capture
the tertiary structure, and apply this to the function prediction task. Hermosilla et al. (2021) propose a convolutional
operator that learns to adapt filters based on the primary, secondary, and tertiary structure of a protein, showing strong
performance on reaction and fold class prediction.

Surface-based methods. Taking a different viewpoint, Gainza et al. (2020) hypothesize that the protein surface displays
patterns of chemical and geometric features that fingerprint a protein’s interaction with other biomolecules. They
utilize geodesic convolutions, which are extensions of convolutions on surfaces, and learn fingerprint vectors, showing
improved performance across binding pocket and protein interface prediction tasks.

Protein Motif Detection Protein motifs have largely been synonymous with common and conserved patterns in a protein’s
sequence or structure influencing protein function, e.g., the helix-turn-helix motif binds DNA. Understanding these fragments
is essential for 3D structure prediction, modeling, and drug design. While reliably detecting evolutionary motifs, existing
tools (Golovin and Henrick, 2008) do not provide a full segmentation of the protein surface manifold. Our work takes
a different viewpoint, by looking at protein motifs from the context of a protein surface. Previous methods developed
in this context either only consider geometric information rather than physiological properties (Cantoni et al., 2010), are
computationally expensive (Cantoni et al., 2011), or designed for particular downstream tasks (Stepniewska-Dziubinska
et al., 2020). Our molecular superpixel approach provides a task-independent segmentation utilizing both geometric and
chemical features, while also being computationally efficient.

B. Message Passing Network

We utilize the Weisfeiler-Lehmann network (WLN) proposed in (Lei et al., 2017) as our base message passing network.
This network builds a neural equivalent of the Weisfeiler-Lehmann test for comparing graphs. For clarity, we describe the
network here. Consider a graph G = (V, £). Given a node v € G with neighbors N (v), node features f,, and edge features
f.., for edge (v,u) € £, the WLN message passing step follows as,

m{) = 7(Uim{ ™ + Uy Y (VI L) (Q1<i<L) @
u€N (v)

where 7(-) could be any non-linear function, and L is the total number of message passing steps, hq(jo) = f,. The final
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representations for each node arise from mimicking the set comparison function in the WL isomorphism test, yielding

h,= > WOmowhf, o Wm{P. 3)
u€N (v)

C. Multi-Scale Protein Representations

To further evaluate the contribution of HOLOPROT to learning multi-scale protein representations, we conduct several
ablation studies. First, we analyze if the performance of the multi-scale model outperforms its isolated components, i.e.
when using only structure or surface representation for subsequent downstream tasks. The second ablation axis analyzes the
construction of molecular superpixel representations. Besides computing summary features for each molecular superpixel
as described in Section 3, we learn patch representations via a MPN on the superpixel graph. The ablation study were
conducted on both tasks, ligand binding affinity and enzyme catalytic function classification.

As displayed in Table 3, HOLOPROT with (¢) and without molecular superpixels () improve over the performance of
structure and surface representations. Further, the results of the ablation study clearly show that different protein scales are
more relevant for particular downstream tasks, e.g., predicting the enzyme-catalyzed reaction class from surface only results
in poor performance. We further see no improvement in applying a MPN within a molecular superpixel (®) over using
summary features (#). Table 3 further shows ablation study results for the identity 60% and scaffold splits for PDBBIND
dataset. The table will be updated with values of HOLOPROT (molecular superpixels with MPN) setting once the results for
the same are available.

Table 3. Ablation Studies Results Evaluation of architectural design choices of HOLOPROT by analyzing the performance of its individual
components as well as feature summarization of molecular superpixels.

Ligand Binding Affinity

Enzyme Class

Model Sequence Identity (30 %)
RMSE Pearson Spearman Accuracy

Structure 1.476 £ 0.027 0.51 £0.029  0.503 £ 0.027 74.2 %

Surface 1.482 £0.015 0.512 £0.022 0.505 £ 0.017 28.6 %

HOLOPROT (¢) 1.464 +0.006 0.509 +0.002 0.500 £ 0.005 77.8 %

HOLOPROT (¢) 1.491 £0.004 0.491 +£0.014 0.482 £0.017 78.9 %

HoLoPROT (m) 1.491 £0.027 0.503 +£0.005 0.492 £+ 0.004 75.7 %

Ligand Binding Affinity
Model Sequence Identity (60 %) Scaffold
RMSE Pearson Spearman RMSE Pearson Spearman

Structure 1.378 £0.027 0.738 £ 0.014  0.730 & 0.009 1.521 £0.023 0.485+0.015 0.492 +£0.013
Surface 1.418 £0.014 0.719 £0.005 0.714 £+ 0.004 1.558 £0.125 0.428 £0.159 0.429 £+ 0.181
HoLoPRroTt () 1.365 + 0.038 0.749 + 0.014 0.742 + 0.011 1.523 £0.028 0.489 +0.019 0.491 £+ 0.021
HoLoPRoOT (¢) 1.473 +£0.024 0.667 +0.011 0.675 +0.019 1.517 £ 0.014 0.491 £ 0.016 0.493 + 0.014

full surface & molecular superpixels ®  molecular superpixel with MPN

D. Superpixels on Molecular Surfaces

Originally developed in computer vision (Ren and Malik, 2003; Mori et al., 2004; Kohli et al., 2009), superpixels are defined
as perceptually uniform regions in the image. In the molecular context, we refer to superpixels as segments on the protein
surface capturing higher-level fingerprint features and protein motifs such as hydrophobic binding sites.



Multi-Scale Representation Learning on Proteins

D.1. Computing Molecular Surfaces

Shape and surface of proteins determines their molecular interactions and thus, accurate computation of macromolecular
surfaces from the provided atom point clouds is essential for elucidating their biological roles in physiological processes. A
variety of methods have been proposed to compute macromolecular surfaces. Van der Waals surfaces is the simplest surface
constructed via the topological boundary of the set of atom spheres, each of van der Waals radius of the constituent atom.
However, as most of the van der Waals surface is buried in the interior of large molecules, Lee and Richards (1971) defined
the solvent-accessible surface (SAS), determined by the area traced out by the center of a probe sphere as it is rolled over
the van der Waals surface. Greer and Bush (1978) proposed smooth solvent-excluded surfaces (SES, or molecular surface)
of a molecule (Connolly, 1983) defined as the boundary of the union of all possible probes having no intersection with the
molecule. In this work, we utilize existing algorithm MSMS (Michel Sanner’s Molecular Surface) computing triangulated
representations of the molecular surface relying on a reduced surface (Sanner et al., 1996).

Details on Surface Preparation All proteins were triangulated using the MSMS with a hydrogen density of 3.0 and a
water probe radius of 1.5. The meshes are downsampled using BLENDER (Blender Online Community, 2018) to a uniform
size of roughly 2600 faces. In practice, we found that this size provided an appropriate balance between maintaining detail
and memory consumption during preprocessing. Geometric and chemical features were computed directly on the protein
mesh.

D.2. Examples of Molecular Superpixels

molecular superpixels hydropathy shape index free electrons

Figure 2. Molecular Superpixels and Surface Features of the Hepatitis C Virus Helicase Inhibitor (PDB ID: 40KS). Molecular
superpixels, indicated by different colors (k = 20), and the corresponding surface features, i.e., b. hydropathy, c. shape index, and d. free
electrons. As highlighted, molecular superpixels are spatially compact and overlap with surface regions dominated by single features such
as hydrophobic patches while capturing coherent areas across all surface features. Protein complex contains 867 residues.

Additional examples of molecular superpixels and their overlap with different surface features are shown in Figure 2 and
Figure 3.

molecular superpixels hydropathy shape index free electrons

Figure 3. Molecular Superpixels and Surface Features of Endothia Aspartic Proteinase (PDB ID: 1EPO). Molecular superpixels,
indicated by different colors (k = 20), and the corresponding surface features, i.e., b. hydropathy, c. shape index, and d. free electrons.
As highlighted, molecular superpixels are spatially compact and overlap with surface regions dominated by single features such as
hydrophobic patches while capturing coherent areas across all surface features. Protein complex contains 330 residues.
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E. Experimental Details

Our model is implemented in PyTorch (Paszke et al., 2019) using the PyTorch Geometric library (Fey and Lenssen,
2019). We use the open-source software RDKit (Landrum, 2016). We used W&B (Biewald, 2020) for experiment tracking.

E.1. Features
E.1.1. SURFACE LAYER

We represent the surface layer as a graph Gs where, for each node us, we compute 4 geometric and chemical features
— shape index, free electrons and proton donors, hydropathy and poisson-boltzmann electrostatics. These features are
computed using code from (Gainza et al., 2020), and the binaries APBS (Baker et al., 2001), PDB2PQR (Dolinsky et al.,
2007) and multivalue (provided within the APBS suite). We refer to (Gainza et al., 2020) for more details.

Two nodes share an edge if they are part of the same triangulation, and an edge is a part of two triangular faces. We compute
7 edge features — the dihedral angle between the two faces, the inner angles (one for each face) opposite to the edge, two
edge-length ratios, where the edge ratio is between the length of the edge and the perpendicular (dotted) line for each
adjacent face. These features were taken from (Hanocka et al., 2019). We also include the distance between the surface
nodes comprising the edge and the angle between the normals at those nodes.

E.1.2. STRUCTURE LAYER

We represent the structure layer as a graph G where the nodes up are the amino acid residues, and the edges occur between
two amino acids within a certain distance threshold. We use the following node and edge features,

Node Feature | Count | One-hot |  Possible Values
Residue Name 23 Yes ALA, GLY etc.
Secondary structure the residue is part of 8 Yes H,G,LE, B, T,C, unk
Solvent Accessible Surface of the residue 1 No -

Residue hydrophobicity 1 No -

As edge features, we use the angle between two residues and the distance between their C,, atoms. To compute the secondary
structure, we use the DSSP binary (Kabsch and Sander, 1983).

E.1.3. LIGAND MOLECULES

We represent the ligand molecule as a graph G, with the following node and edge features,

Node Feature | Count | One-hot |  Possible Values

Atom symbol 65 Yes C, N, O etc.

Atom degree 10 Yes 0,1,2,3,4,5,6,7,8,9

Implicit valence of the atom 6 Yes 0,1,2,3,4,5

Explicit valence of the atom 6 Yes 1,2,3,4,5,6

Part of an aromatic ring 1 No 0,1

Edge Feature | Count | One-hot | Possible Values

Bond type 4 Yes Single, Double, Triple, Aromatic
Whether bond is conjugated 1 No 0, 1

Whether bond is part of ring 1 No 0,1

E.2. Datasets

Protein-Ligand Binding Affinity We use the refined subset of the 2019 version of PDBBind (Liu et al., 2017) and
evaluate our model on 3 splits — scaffold, identity 60% and identity 30%. Two of these splits (identity 60% and identity
30%) are based on sequence identity, with sequences in the test set not having more than a 30% or 60% to sequences in
the training set. We use the same splits as provided by (Townshend et al., 2020), and refer the reader to the same for more
details on their construction. The scaffold split is prepared by computing the Bemis-Murcko scaffold (Bemis and Murcko,
1996) using RDKit for each molecule, and splitting the molecules such that molecules with rare or unseen scaffolds are part
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of the test set.

Enzyme-Catalyzed Reaction Classification We use the PDB files and splits provided by Hermosilla et al. (2021) for this
task. For more details on the dataset construction, we refer the reader to Hermosilla et al. (2021, § C).

E.3. Network Architectures

Hyperparameter Tuning For protein-ligand binding affinity prediction, we performed a hyperparameter sweep over the
hidden dimensions of the surface (150, 200, 300) and structure layers (150, 200, 300), and the hidden dimensions of the
MLP (512,256, [512, 256]). For the enzyme-catalyzed reaction classification, given time constraints, our hyperparameter
tuning was restricted to the learning rates 0.001, 0.0005, 0.0001 and hidden layer activations (ReLU, LeakyReLU).

For all HOLOPROT models, we use the Adam optimizer for training and clip gradients to a maximum norm of 10.0.

E.3.1. PROTEIN-LIGAND BINDING AFFINITY

For HOLOPROT with the full surface, the surface and structure layer MPNs have hidden dimensions of 150 and 200 with
message passing steps of 6 and 5 respectively. The affinity prediction MLP has a single hidden layer of dimension 512. For
HoLOPROT with molecular superpixels, the surface and structure layer MPNs have hidden dimensions of 150 and 300,
with 5 message passing steps. The affinity prediction MLP has a single hidden layer of dimension 256. For both models,
the ligand MPN has a hidden layer dimension of 300, with 4 message passing steps. We use the ReL.U activation function.
Starting with an initial learning rate of 0.001, we apply a learning rate decay of 0.9 based on a validation RMSE plateau,
with an improvement threshold of 0.01 and a patience of 5. The HOLOPROT model for full surface has 1.44M parameters,
while the HOLOPROT model with molecular superpixels has 1.76M parameter.

E.3.2. ENZYME-CATALYZED REACTION CLASSIFICATION

Both HOLOPROT models have a hidden dimension of 150 for both the surface and structure layers, with 4 and 5 message
passing steps. The classification MLP has a single hidden layer of dimension 512. We use the LeakyReLU activation
function, and apply dropout with probability 0.15 for each message passing step, and 0.3 for the classification MLP. Starting
with an initial learning rate of 0.0005, we apply a learning rate decay of 0.6 based on a validation accuracy plateau, with an
improvement threshold of 0.01 and a patience of 10. Both models have roughly 0.64M parameters.

E.3.3. BASELINES

For protein-ligand binding affinity prediction, we use the provided code for different baselines and extend them as necessary
for the task. For enzyme-catalyzed reaction classification, we use the baseline values from (Hermosilla et al., 2021).

Across all models for protein-ligand binding affinity prediction, we compute representations for proteins and ligands and
concatenate them and use that as input for the MLP. For the models described in (Townshend et al., 2020), we use the
reported values. Wherever possible, we restrict the ligand embedding dimension to be 300 consistent with our experiments.
The details for the remaining baselines are as follows,

Oztiirk et al. (2018) We downloaded the code from the official repository. The authors do not use a separate validation
set, but instead use a cross-validation strategy. We combine the training and validation sets and then perform 5-fold
cross-validation. The authors allow specification of hyperparameters for the number of filters (32, 64), the size of ligand
sequence filters (4, 8, 12, 36), and size of protein sequence filters (4, 8, 12, 36). We use a default batch size of 64, and the
default learning rate, and train the model for 100 epochs. We also note that the model typically undergoes early stopping
around epoch 80. The best performing model occurred with 32 filters, with a filter size of 4 for ligand sequences, and 8 for
protein sequences.

Bepler and Berger (2019) We downloaded the code and pretrained models from the official repository and embed the
ligand sequence with a bidirectional LSTM. For embedding the protein, we use the default values as from the pretrained
model. For the ligand, we use an input dimension of 512, and a LSTM hidden dimension of 512, with a final embedding
dimension of 100, similar to the protein. Our hyperparameter tuning is restricted to ligand input dimensions (512, 256),
LSTM hidden dimensions (512, 256) and the MLP hidden dimensions (512, 256, [512, 256]). We use a batch size of 32 and
learning rate of 0.00001 for the pretrained model, and 0.001 for the remaining parameters.
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Rao et al. (2019) We downloaded the code and pretrained models from the official repository. We represent the ligand as
a sequence and embed it using a Transformer, with an embedding dimension of 300 and an intermediate size of 512. We use
a 2-layer MLP with hidden dimensions of 512 and 256 and dropout probabilities of 0.2 to predict the binding affinity after
concatenating the protein and ligand embeddings. For training, we use a learning rate of 0.0001 for the pretrained model
parameters and 0.001 for the remaining parameters, and trained the model for 300 epochs. Our hyperparameter sweep was
restricted to batch size (default value 32, multiplied and divided by 2 until no improvement), and hidden layer dimensions
for the MLP (512, 256, [512, 256]).

Gainza et al. (2020) We downloaded the code from the official repository and extended the model for the ligand binding
affinity task. For the protein, we use the default values provided. We represent the ligand as a graph and use the same
architecture and parameters as our message passing network, with a hidden dimension of 300. Given memory and time
constraints, we were unable to perform a hyperparameter sweep.

Hermosilla et al. (2021) We downloaded the code from their official repository. The proteins are embedded with an
embedding dimension of 1024. We represent the ligand as a graph and use the same architecture and parameters as our
message passing network, with a hidden dimension of 300. We concatenate the protein and ligand embeddings before
using it as input for a single-layer MLP with hidden size 512. The model is trained with the default learning rate 0.001 and
learning rate decay for 300 epochs. Due to memory constraints, we trained with the default batch size of 8, and performed a
hyperparameter sweep for MLP hidden sizes 512, 256, [512, 256], and protein embedding dimensions 1024, 512.

E.4. Computing Infrastructure

All models were trained on a single NVIDIA 1080Ti GPU. For the PDBBind dataset, all the HOLOPROT models run within
16 hours when trained for 200 epochs, and within 8 hours when trained for 100 epochs. The baseline models (Rao et al.,
2019; Hermosilla et al., 2021) take about 40 hours for running 300 epochs, while the remaining baseline models train in
under 24 hours. For the enzyme-catalyzed reaction classification dataset, the HOLOPROT models are trained for 24 hours on
the NVIDIA 1080Ti GPU after which it is stopped. Typically, the model is trained for 100 to 110 epochs by then, when
using a batch size of 10.



