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Abstract

We propose a method called integrated diffusion
for combining multimodal datasets, or data gath-
ered via several different measurements on the
same system, to create a joint data diffusion op-
erator. As real world data suffers from both local
and global noise, we introduce mechanisms to
optimally calculate a diffusion operator that re-
flects the combined information from both modal-
ities. We show the utility of this joint operator
in data denoising, visualization and clustering,
performing better than other methods when ap-
plied to multi-omic data generated from periph-
eral blood mononuclear cells. Our approach better
visualizes the geometry of the joint data, captures
known cross-modality associations and identifies
known cellular populations. More generally, in-
tegrated diffusion is broadly applicable to multi-
modal datasets generated in many medical and
biological systems.

1. Introduction

Recently there has been a profusion of multimodal data
measured in parallel on the same system. Some examples
include multiple modalities of data collected on biological
specimens, such a single cell RNA-sequencing or single
cell ATAC-sequencing, or multiple measurements collected
on hospitalized patients, such as lab tests and continuous
monitoring systems. There is a dire need for integration of
this data in order to perform a wide variety of downstream
tasks such as clustering, differential or comparative analysis,
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denoising and cross-modality correlations between features.
We believe that the key to integrating data is to discover
which entities are similar to each other across modalities
by creating a data affinity graph on the basis of information
from all modalities available. However, it is not immediately
clear how to determine distances or similarities between en-
tities on the basis of multiple modalities of data, which
could be measured on entirely differently scales and suffer
from different amounts of noise and sparsity. This is partic-
ularly problematic in the biomedical domain, where issues
of ‘drop out’ or under-sampling make correlation analysis
in single cell technologies extremely difficult. In order to
address this, we turn to the manifold learning framework
of data diffusion that was developed by Coifman & Lafon
(2006).

Although measurement strategies create high dimensional
observations, the intrinsic dimensionality, or degrees of free-
dom within the data, is relatively low. This manifold assump-
tion is at the core of the data diffusion framework, which
learns the intrinsic manifold space of the data by powering a
Markov transition matrix to a power ¢, implicitly calculating
a t-step random walk on the data graph. This process accu-
mulates probabilities in paths that traverse through relatively
dense regions of the data and diminish in sparse outlier re-
gions. In Coifman & Lafon (2006), the powered diffusion
operator is eigendecomposed to uncover intrinsic data di-
mensions called a diffusion map however since that seminal
work, data diffusion has been shown to be useful in a myriad
of data processing tasks (Moon et al., 2018), including clus-
tering (Burkhardt et al., 2020), denoising (Van Dijk et al.,
2018) and dimensionality reduction (Moon et al., 2019). Re-
cently, a multimodal diffusion approach named alternating
diffusion (Katz et al., 2019) generalized the random walk
to “hop” between different metric spaces by taking a matrix
product of the markov transition matrices. As explained by
Katz et al. (2019), the diffusion distances in this joint space
constitute the joint diffusion map embedding, which cap-
tures information shared between modalities but removes
modality-specific information. While this approach creates
a joint manifold, it does not generalize well to noisey bio-
logical datasets which contain modality specific sources of
noise.

Here, we define an integrated diffusion operator for multiple
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data modalities which accounts for local noise and intrinsic
dimensionality of each modality. Conceptually diffusion
probabilities in our integrated operator are computed by tak-
ing several steps in the data graph from one modality, and
several steps on the data graph defined by the other modal-
ity. The number of steps is carefully chosen based on the
spectral entropy of each operator. Furthermore, we empha-
size dominant directions in the diffusion operator by locally
denoising using PCA-based low-rank approximations.

2. Method
2.1. Problem Formulation

Let X C RPx and Y C RPY be two sets of data, perhaps
with different dimensionalities, capturing two modalities
gathered (e.g., via different measurement techniques) from
the same underlying system. We consider a setting where
the underlying system of the data can be modeled via a
d-dimensional manifold (with d < min{Dx, Dy }) that
is embedded in a high dimensional ambient space given
by both modalities, but is only partially captured by each
individual dataset. Here, we describe an unsupervised ap-
proach to integrate information from such multimodal set-
tings based on the principles of data diffusion in order to
recover the underlying joint manifold. By utilizing methods
that capture both local and global manifold geometric infor-
mation, our method is robust to vastly differing quantities of
noise. Our method allows for amenable visualization, data
denoising, and clustering of this jointly recovered manifold.

Neighborhood low rank approximation for local noise
correction We begin by estimating a measure of local sig-
nal in various neighborhoods in the dataset. To do this, we
first run spectral clustering on each modality to obtain [V
partitions X1, ..., Xy, written as submatrices of X (and
accordingly for Y) Next, we compute SVD on the centered
points in the partition X; — X; = USV” where X is a ma-
trix with all rows containing the partition center, U consist
of left singular vectors, V' right singular vectors and S con-
tains singular values. In order to denoise a neighborhood,
we estimate the intrinsic dimensionality using an eigengap
heuristic, counting the first k+/ singular values. Finally, we
obtain a low rank approximation of the data in each local par-
tition by using a truncated SVD, i.e., X; = U'S" (V)T
where S’ only takes the first (most significant) k+ 1 singular
values, and vectors U’, V'’ consist of the first £ + 1 columns
of U, V (correspondingly). It is important that this method
be highly local so as not to destroy the manifold structure
via elimination of linear dimensions in the data.

Modality specific diffusion time scale calculation via
spectral entropy In addition to correcting for varying lo-
cal noise within a single modality, it is crucial to estimate the

intrinsic dimensionality of each modality to understand how
much information each contains. Previous implementations
of data diffusion methods, such as alternating diffusion and
diffusion maps, provide no means of calculating a correct
timescale. Here, we apply spectral entropy, computed on
the diffusion operator, to estimate ideal number of ¢-steps
to take in each modality. This refers to the theory of graph
signal processing (Shuman et al., 2013) where the eigenvec-
tors of the diffusion operator form frequency harmonics on
a data graph. The spectral entropy of the operator is then
the amount of variability explained by each frequency in the
graph spectrum, i.e., the diffusion dimension.

To quantify the significance of each diffusion dimension
in describing the data geometry, we can observe the corre-
sponding eigenvalues A1, As, . .., Ag. Quantitatively, this is
given by the spectral entropy defined on probability distri-
bution of eigenvalues normalized by their sum, 7(t). This
is parameterized by the diffusion timescale ¢ as this spec-
trum changes with the powering of the diffusion operator
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When the diffusion operator is powered to a value ¢, there
is an application of a low-pass filter to the eigenspectrum
of the operator such that the eigenvalues corresponding
to higher frequencies are diminished. Thus the spectral
entropy decreases with subsequent powering of the operator
t—but not steadily. For low values of ¢ the spectral entropy
rapidly decreases and then stabilizes to create an elbow. We
believe this elbow refers to the elimination of noise, with
further powering removing signal. We find the elbow of
this operator for the modality-specific operators. In this
manner, the higher frequency components of the data graph,
corresponding to noise dimensions will be eliminated in a
frequency-specific manner globally on the graph, as opposed
to locally in a vertex-specific manner using local PCA. We
note that a similar heuristic is used in Moon et al. (2019)
where any value beyond an elbow is chosen for visualization
using PHATE.

Fusion of operators We compute ¢ using the spectral
entropy heuristic for each modality taken independently,
giving us an estimate for the relative quantities of informa-
tion present between modalities. While the absolute degree
of information within each view is informative, a ratio of
information is perhaps more meaningful. We raise each
modalities diffusion operator to the lowest possible multiple
of the ideal view specific ¢ computed via spectral entropy.
For example, if we obtain time values of 2 and 8 for two
individual modes, then we will assume a ratio of 1:4 of
information. Intuitively, this ratio indicates that for every
diffusion “step” taken in modality 1, four diffusion steps
will be taken in modality 2. More generally, we can write
our joint diffusion operator, J, to reflect the differing levels
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Figure 1. Overall workflow of integrated diffusion. First, local low rank approximation is performed on each dataset independently,
removing local noise. Next, the intrinsic dimensionality of each modality is calculated by the spectral entropy of each operator to
determine the ideal number of ¢-steps to place in each modality. Each operator is then powered to a ratio of the calculated ¢-steps and
finally multiplied together to simulate steps in a random walk. The resulting diffusion operator can help denoise, visualize and cluster.

of global information between views as follows:

J =Pt « PY?, (2)

where t1 and to are integer values obtained from the re-
duced ratio as described above, and P; and P are modal-
ity specific diffusion operators. We use the reduced ratio
instead of directly applying the values of ¢ obtained from
the spectral entropy heuristic, as this joint operator is then
powered once more to correct for spurious noise generated
when integrating the datasets (i.e., noise present from one
measurement modality affecting signal present from another
measurement modality). Powering directly by t; and to
would lead to an oversmoothing effect in the final com-
puted manifold which would collapse independent clusters
together. We determine the adequate timescale for powering
this joint diffusion via the same spectral entropy approach
and calculate an embedding using the method of Moon et al.
(2019).

3. Biological Applications

New methods allow for the measurement tens to hundreds
of thousands of features in single cells, allowing for un-
precedented insight into biological and cell type specific
processes. Until recently, only a single modality could be
measured in each cell, be it expression of genes through
RNA sequencing or the accessibility of chromatin regions
through ATAC sequencing. Now novel techniques allow
for the measurement of different modalities at single-cell
resolution. Increasingly commonly, individual cells are mea-
sured with a combination of chromatin accessibility, RNA
expression, protein expression and spatial location (Ma et al.,
2020; Cao et al., 2018; Liu et al., 2020). This new type of

data is powerful, as it not only allows for the study of each
modality independently, but also allows for the discovery
of regulatory mechanisms between modalities. Currently,
no computational techniques are capable of modelling and
predicting these dynamics as there are no strategies that inte-
grate different modalities of data to jointly visualize, cluster
and denoise multimodal single-cell data.

We apply integrated diffusion to multimodal single cell data
of 11,909 blood cells, visualizing the joint manifold, identi-
fying known cell types and uncovering key cross modalities
interactions. Visualizing each modality, gene expression
and chromatin accessibility, independently reveals similar
overall structure however different resolutions. Chromatin
accessibility data, when compared to gene expression data,
is incredibly sparse and generally considered to be far less
informative. When computing the spectral entropy of each
modality, we can clearly see that the chromatin accessibility
diffusion operator has a far fewer informative dimensions
than the gene expression operator. The alternating diffusion
approach, which does not take into account the informa-
tion present within each modality, creates an embedding
that blends the distinct structure of gene expression data
with the less informative structure of chromatin accessibility
data. Integrated diffusion, however, appears to better resolve
differences in information across dataset, producing a visu-
alization that contains sharper borders between populations
and displays clear structure when visualized with PHATE
(Figure 2A).

These more clearly resolved populations also correspond
with more biologically relevant clusters. Using cellular an-
notations of this dataset which predict celltype based on the
expression of known marker genes and accessibility regions
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Figure 2. Application of integrated diffusion to multimodal single cell data. A) Visualization of gene expression and chromatin accessibility
manifolds as well as alternating and integrated diffusion operators via PHATE. Points colored by annotated cell type. B) Visualization of
spectral entropy of each modality. C) Adjusted Rand Index between spectrally computed clusters on each diffusion operator and known
annotated cell types. D) Mutual information between the expression of a gene and it’s accessibility across differing denoising strategies:
modality specific denoising, denoising both modalities with alternating diffusion operator or integrated diffusion operator. E) Average
mutual information for differing denoising strategies across all gene expression-gene accessibility pairs.

(Hao et al., 2020), we computed clusters from the diffusion
operator of each modality as well as alternating and inte-
grated operators. Clusters from the integrated operator best
overlapped with annotated cell types (Figure 2C).

A major issue in single cell data is sparsity due to under sam-
pling which makes it very difficult to measure and model
cross modality interactions. Theoretically, if a gene is ex-
pressed, then the chromatin encoding that gene must be
accessible. With this understanding of the data, we try to
recover these known associations between gene expression
and chromatin accessibility (Figure 2D). Due to sparsity,
there is no association as computed by mutual informa-
tion between these variables without denoising. There are
several strategies to recovering these cross modality interac-
tions: denoising with modality specific diffusion operators,
denoising with a single alternating diffusion operator or de-
noising with a single integrated diffusion operator. Using
the integrated diffusion operator appears to best recover

known gene expression and chromatin accessibility asso-
ciations as shown in genes CD19, CD14 and CD4 (Figure
2D). We then computed these associations across all genes
with each of our denoising strategies. Across 18,659 genes,
integrated diffusion recovered significantly more informa-
tion between a gene’s accessibility and its expression than
alternating diffusion and modality-specific diffusion (Figure
2E).

4. Conclusion

We introduce the integrated diffusion operator, a method for
learning the joint data geometry as described by multiple
data measurement modalities applied to a single system.
We show its improvement over alternating diffusion in in-
tegrating multimodal information. We apply our method
in the biomedical setting to a multi-omics dataset, where
we generated rich joint manifolds, compute cell popula-
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tions with increased accuracy and recover cross modality
gene-chromatin associations. Our flexible framework is
extendable to multiple modalities and will allow for the
successful integration and analysis of massive multi-omic
datasets from a wide variety of fields. Future work will
involve multiscale diffusion operators designed to integrate
data at many levels of granularity.
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