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Abstract

In biomedical applications, patients are often pro-
filed with multiple technologies or assays to pro-
duce a multiomics or multiview biological dataset.
A challenge in collecting these datasets is that
there are often entire views or individual fea-
tures missing, which can significantly limit the
accuracy of downstream tasks, such as, predict-
ing a patient phenotype. Here, we propose a
multiview based deep generative adversarial data
imputation model (MultImp). MultImp im-
proves imputation quality and disease subtype
classification accuracy in comparison to several
baseline methods across two multiomics datasets.
MultImp is now publicly available at https:
//github.com/multimp/multimp.

1. Introduction
Across a range of biomedical and clinical applications, it
is becoming increasingly common to profile a set of pa-
tients with multiple modalities to obtain a so-called ‘mul-
tiomics’ or multiview dataset. In these datasets, each view
corresponds to a set of features measured per patient with
a particular technology or assay and is intended to sum-
marize a particular biological process. In diverse clinical
applications, such as in predicting pregnancy complications
(Stelzer et al., 2021; Ghaemi et al., 2018), and subtyping
cancers (Vasaikar et al., 2018), the successful integration
of multiple biological views has proven to facilitate more
accurate patient outcome prediction than through any one
view alone.

As multimodal profiling is becoming increasingly promi-
nent in biomedical applications, there are several practical
computational challenges that need to be addressed in order
to be able to jointly use multiple modalities for downstream
unsupervised and supervised tasks. The first problem that
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has received significant attention focuses on learning a rep-
resentation for each patient that is consistent across views
(Pierre-Jean et al., 2019; Ding et al., 2019). A second class
of methods has focused on linking multiview biological data
to downstream prediction tasks, such as disease subtype
classification (Couture et al., 2019) or predicting continuous
outcomes, such as, gestational age in pregnancy (Ghaemi
et al., 2018).

A practical limitation in multiview biological datasets is
that for various reasons, entire modalities or individual fea-
tures within a view can be missing in certain patients (Arge-
laguet et al., 2018). Some practical reasons for missing
data include technical errors, patient complications, or cost
constraints. Given that each view represents a unique biolog-
ical process, but that regulatory mechanisms and cross-talk
exists (Stelzer et al., 2021; Morton et al., 2019) between
features across modalities, it is reasonable to assume that
imputation quality for missing features within a view can be
improved by leveraging insight from other views.

Common practice for imputation within a single view is to
use the mean feature values across all patients, or across the
k-nearest patients, or to use a matrix factorization-based ap-
proach (Song et al., 2020). More sophisticated methods that
target imputing multiomic datasets were developed, for ex-
ample, based on neural networks, ensemble learning (Song
et al., 2020). In multimodal datasets for non-biological
applications, generative modeling approaches with input
across all views have shown promise in improving imputa-
tion quality (Shang et al., 2017). In this work, our primary
objective is to apply state-of-the-art generative modeling
approaches for imputation in biomedical applications and
to systematically study the extent to which it is helpful to
perform imputation using information across all views for
same patients. Additionally, our presented method further
expands on an existing generative modeling approach for
this task (Zhang et al., 2020) by adapting it to collectively
handle categorical and continuous features, which are com-
mon in biomedical datasets.

Here we introduce MultImp, a multiview generative mod-
eling approach for imputing multimodal data. Our contribu-
tions are as follows.

• MultImp adapts CPM-Nets (Zhang et al., 2020) to
handle both categorical and continuous features, which
is common in biomedical datasets.

https://github.com/multimp/multimp
https://github.com/multimp/multimp
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• MultImp handles more diverse types of missingness,
including random missingness features and view miss-
ingness, while CPM-Nets can only handle missing
views.

• We evaluate MultImp on two multiview biomedical
datasets by measuring imputation accuracy and perfor-
mance in two disease subtype classification tasks.

2. Methods
We define X as a multiview dataset over N samples. Here,
Xn = {x(v)

n }Vv=1 encodes all V dataset views in the nth
sample. For a given x

(v)
n , we define x

(v(r))
n as the vector

of continuous features, and x
(v(c))
n as the one-hot version

of categorical features. We further represent the number of
features in the vth view as Iv . The set S denotes a collection
of binary indicators that record which values are observed
in X . For the nth sample, Sn = {s(v)n }Vv=1 particularly
represents the set of these indicators in the nth sample across
all views. Here, s(v)nj = 1 if the jth feature is observed in

the vth view of the nth sample, and s
(v)
nj = 0, otherwise.

2.1. Model

Our proposed MultImp is a combination of deep gener-
ative models and multiview learning for data imputation.
Beyond CPM-Nets, we adapt our method to handle both
categorical and continuous features and more diverse kinds
of missingness than only the view missing case explored in
Ref. (Zhang et al., 2020). The overview of our MultImp
method is illustrated as Figure 1.

Multiview Learning As shown in Figure 1, we apply
multiview learning to embed all the samples with arbitrary
missingness patterns (missing completely at random, or
‘MCAR‘) into a comprehensive shared latent space. Here,
the latent representation of samples is consistent acoss views
and each view is able to provide distinctive information to
better encode the samples in the latent space. We evaluate
the quality of the latent representations and the generators
using the reconstruction loss, Lrec, of observed features as
equation (1).

Categorical and Continuous Features In order to re-
cover missing categorical features, different losses are im-
posed on categorical and continuous features, respectively.
Here, Gv(r)j(hn) represents the reconstructed jth continu-
ous feature in the vth view from the generators, and hn is
the latent representation for nth sample. Similarly, we let
Gv(c)j(hn) be the the one-hot version of the reconstructed
jth categorical feature in the vth view. We define Lr(c)

and Lr(r) as the cross entropy (CE) and L2 loss for recov-
ering categorical and continuous features, respectively, in
equations (2) and (3).

Lrec = Lr(r) + Lr(c) (1)

Lr(r) = Σn,vΣ
Iv(r)

j=1 s
(v(r))
nj ||Gv(r)j(hn)− x

(v(r))
nj ||2 (2)

Lr(c) = Σn,vΣ
Iv(c)

j=1 s
(v(c))
nj (−x(v(c))

nj · log(Gv(c)j(hn))) (3)

Here, · is the notation for inner product.

Generative Adversarial Networks (GANs) GANs
(Goodfellow et al., 2014) have shown remarkable potential
for data imputation. MultImp consists of two sets of GAN
modules: a set of generators G(·) to learn the distribution
p(x

(v)
data) over the data x in the vth view from hn, and a

corresponding set of discriminators D(·) to discriminate
real samples from generated samples. These two sets of
modules are trained in an adversarial manner. Considering
the random missingness in real samples, we define our
GAN loss in equation 4 as,

Ladv = ΣN
n=1ΣV

v=1ΣM
m=1[logDv(s(v)m ◦ x(v)

m )

+ log(1−Dv(s(v)n ◦Gv(hn)))] (4)

Here, ◦ is the notation for Hadamard product.

Overall Loss The overall loss, L (equation 5), is com-
posed of the view reconstruction loss and the GAN loss.
View reconstruction loss is for precisely recovering missing
values and the GAN loss ensures that our imputation is re-
alistic and can retain significant information and variance
from the original data. The loss, L, is defined as,

L = min
G

max
D

min
h
Ladv + Lrec. (5)

3. Experiments
In each dataset, we sequentially excluded varying percent-
ages of matrix elements at random, with the rate of exclusion
ranging between 10% and 50%. After imputing back the
excluded (missing) features, we calculated 1) the average
root mean squared error (RMSE) for imputed continuous
features, 2) the average accuracy (Jaccard Similarity) for
categorical features, and 3) the average accuracy in a disease
subtype classification task. Each experiment was repeated
five times.

3.1. Datasets

In our experiments, we used the following two multiview
biomedical datasets.

• ADNI. Alzheimer’s Disease Neuroimaging Initiative
(ADNI) data (Mueller et al., 2005) is a dataset involv-
ing multiple types of experimental assays for under-
standing Alzheimer’s Disease. We used two views in
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Figure 1. Illustration of MultImp. Each sample is represented by a shared S-dimensional latent representation, hn ∈ RS . Under
different generators, {Gv(hn)}Vv=1, the features across different views can be recovered from their latent representation hn. View
reconstruction loss, Lrec, is used for optimizing the generators, {Gv(hn)}Vv=1, and the latent representation, hn, iteratively. The
discriminators, {Dv(x(v))}Vv=1 determine whether a sample was reconstructed by a generator or is a true original one. The discriminators
{Dv(x(v))}Vv=1 specify a criterion to determine whether the reconstructed data from the latent space is sufficiently realistic.

this dataset that record 1) clinical information and 2)
gene expression profiling. Across views, there are 744
total matched samples.

• TCGA-Glioma. The TCGA Glioma dataset (Va-
saikar S., 2017) contains seven views to describe
Glioma. These views include, 1) clinical annotation, 2)
somatic mutation data (gene level SNVs), 3) RNAseq
(normalized counts via the Illumina HiSeq platform,
Gene-level, Normalized log2 RPKM), 4) copy num-
ber variation (focal level, GISTIC2 log ratio), 5) copy
number variation (gene level, GISTIC2 log ratio), 6)
miRNA expression for tumor samples (Normalized,
RPM), and 7) methylation data of tumor samples at
Gene level (Beta values, Illumina HM450K platform).
Irrelevant (no variance across patients) genes from the
RNAseq and mutation views were removed. Only 425
complete samples were kept for model evaluation.

Table 1. MultImp Variations
Variations GAN Multiview CE Loss

(a)
√ √ √

(b)
√

×
√

(c) ×
√ √

(d) × ×
√

(e)
√ √

×
(f)

√
× ×

(g) ×
√

×
(h) × × ×

3.2. MultImp Variations + Baseline Definitions

We compare MultImp to three baselines available in
the Python package ‘FancyImpute‘ (Alex Rubinsteyn and
Sergey Feldman). These baselines include Mean Imputation,
KNN Imputation (Crookston & Finley, 2008) and Matrix
Factorization Imputation (Koren et al., 2009).

To investigate the benefit from using 1) GANs, 2) multiview

learning, and 3) the cross entropy (CE) loss for categorical
features, different variants of MultImp were implemented.
We define 8 variants of MultImp in Table 1. Here ‘×‘ in
the multiview column implies all views were concatenated
into a single view.

3.3. Patient Subtype Classification Tasks

To evaluate whether the imputation approach can be used
in downstream classification tasks, we formulated disease
subtype classification tasks for each of the two datasets.
Since the number of features is dramatically larger than the
number of samples, we first concatenated all the features
together (original and imputed) and applied principal com-
ponent analysis (PCA) to reduce the dataset dimension to
128. A support vector machine (SVM) was then trained to
predict the disease subtype based on the 128 features defined
by PCA. In the ADNI dataset we formulated a multiclass
classification problem to predict the 4 disease status (AZ,
NC, MCI, LMCI). In the TCGA Glioma dataset, we aimed
to predict astrocytoma from other subtypes of glioma.

3.4. Results

In both the ADNI (Fig. 2(a), 2(b), 2(c)) and TCGA Giloma
datasets, (Fig. 2(d), 2(e), 2(f)), MultImp or its variants out-
perform all three baselines on all evaluation tasks (Fig. 2).
MultImp also imputes categorical features quite robustly
across multiple rates of missingness. Specifically, in Figs.
2(b) and 2(e), the accuracy in imputing categorical features
achieved by baseline methods have comparably large vari-
ance while the variance fluctuated only between 0.82 to 0.85
in the MultImp variants. In Fig. 2(a) and 2(d), we show
that GANs improve the imputation quality for continuous
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Figure 2. Imputation Quality: (a) ADNI imputation RMSE, (b) ADNI imputation accuracy for categorical features, (c) ADNI disease
subtype classification accuracy, (d) TCGA imputation RMSE, (e) TCGA imputation accuracy for categorical features, (f) TCGA disease
subtype classification accuracy

Figure 3. Imputation Quality Difference By Adding Classification Loss for Categorical Features: (a) ADNI multiview RMSE, (b) ADNI
single-view RMSE, (c) ADNI multiview categorical accuracy, (d) ADNI single-view categorical accuracy

features but not necessarily for categorical features. Further,
multiview learning was not as helpful as GANs for imput-
ing categorical and continuous features. Alternatively, in
the disease-subtype classification tasks, we observed that
multiview learning usually yields the best performance (Fig.
2(c), 2(f)).

As shown in Figs. 3(a) and 3(b), there is little benefit from
CE loss for imputing continuous features, likely because
there are very few categorical features compared to contin-
uous features. However, in Figs. 3(c) and 3(d), we show
that adding the cross entropy loss helped to improve the
categorical feature imputation accuracy.

Fig. 2(f) shows that using imputed data can more accu-
rately predict disease subtypes than using the original data.
This is potentially due to the fact that the imputation with
MultImp can capture the distinguishable information for
recognizing glioma subtypes, while reducing noise across
views.

4. Discussion
Our experiments show that for both multiview and single-
view learning, GANs are beneficial for imputation. The
benefit of multiview learning is more apparent in the disease
subtype classification tasks but less noticeable with respect
to imputation precision. This observation does not align
with previous studies on non-biological datasets (Zhang
et al., 2020). We suspect that in biological datasets, the
assumption that each view has the same number of represen-
tatives in the shared latent space is unreasonable, and it is
therefore of interest in future work to consider how to allow
for more flexible shared view-specific latent representations.

Overall, we show that adding a cross-entropy loss does not
significantly improve the imputation quality of numerical
features. We expect this modification to be more beneficial
in datasets with a higher proportion of categorical features.
Further exploration is needed to understand the implica-
tions of missingness in multiomics datasets, especially with
respect to predicting clinical outcomes (Lim et al., 2021).
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