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Abstract
T cells play a pivotal role in the adaptive immune
system recognizing foreign antigens through their
T-cell receptor (TCR). Although the specificity
and affinity of the TCR to its cognate antigen
determines the functionality, the phenotypic dif-
ferentiation and thereby also the fate of the T cell
remain poorly understood. Therefore, studying
the transcriptional changes of T cells in the con-
text of their TCRs is key to deeper insights into
T-cell biology. To this end, we developed a multi-
view Variational Autoencoder (mvTCR) to jointly
embed transcriptomic and TCR sequence informa-
tion at a single-cell level to better capture the phe-
notypic behavior of T cells. We evaluated mvTCR
on two datasets showing a clear separation of the
cell state and their functionality, thus, providing a
more biologically informative representation than
models using each modality individually.

1. Introduction
T cells are an integral part of the adaptive immune system.
They recognize antigen-derived epitopes that are bound to
the Major Histocompatibility Complex of other cells and
initiate an immune response to free the body from harm-
ful microorganisms and cancer. This recognition is mainly
driven by the T-cell receptor (TCR), a surface protein con-
sisting of an α- and β-chain, which is expressed with a
diversity of up to 1020 different sequences (Zarnitsyna et al.,
2013). The complexity of cell state and functionality makes
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the study of T cells a challenging endeavor. Recent advances
in single-cell technologies allows to jointly determine TCR
sequences and transcriptome information (10x Genomics,
2019; Yost et al., 2019; Fischer et al., 2020), which pave the
way to a deeper understanding of the phenotypic interplay
between gene expression and TCR sequence.

Previous approaches for embedding T cells used TCR se-
quences for clustering or similarity assessment of groups
with common epitope specificity (Glanville et al., 2017)
(Dash et al., 2017). Due to greater datasets, new meth-
ods were proposed utilizing deep learning models such
as DeepTCR, which embeds T cells based on their TCR
sequence and VDJ gene usage with an Autoencoder (Sid-
hom et al., 2021). Recently, two novel methods were pro-
posed that additionally include transcriptomic information
by Bayesian Clustering (Zhang et al., 2021) or neighbor-
graph analysis (Schattgen et al., 2020). However, none of
the existing methods have addressed learning a joint repre-
sentation guided by both functional information from TCR
sequences and transcriptional profiling of cells to analyze
such paired data.

To address this, we propose mvTCR (
https://github.com/SchubertLab/mvTCR) to learn a
joint embedding of T cells by using both TCR sequence
and the scRNA-seq data. Our model leverages advances in
sequence learning using Transformers (Vaswani et al., 2017)
combined with generative multi-view learning (Kingma &
Welling, 2013; Lee & van der Schaar, 2021) providing a
holistic view to analyze T cells. The model is evaluated
on two datasets demonstrating the clustering of cells
with homogeneous epitope specificity and transcriptional
similarity.

2. Methods
The VAE model embeds the transcriptomic data XRNA and
the amino acid sequences of the TCR XTCR by its encod-
ing networks ERNA and ETCR to the features HRNA and
HTCR of size dfeat, respectively. The extracted feature em-
beddings are subsequently fused by the mixture modelM to
obtain a joint latent distribution q(Zjoint|XRNA, XTCR).
For downstream tasks, the Gaussian mean of this distri-

https://github.com/SchubertLab/mvTCR
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Figure 1. Overview of the mvTCR architecture. a) Composition of the modality-specific encoder and decoder networks. b) Concatenation
version of the mixture module. c) PoE version of the mixture module.

bution is used to obtain the T cell embedding. We tested
two mixture model schemes: concatenation and Product-of-
Expert (PoE) (Lee & van der Schaar, 2021). M ’s output
feeds into the modality-specific decodersDRNA andDTCR

reconstructing the corresponding input data (Figure 1).

2.1. Encoder and Decoder Networks

TCR: The sequences of α- and β-chains in XTCR are label-
encoded, end-padded to the maximum sequence length, and
processed by individual encoder- and decoder-architectures.
Since the two chains follow a similar structure but contribute
differently, both networks share the same architecture but
not their weights. Due to their great ability to encode se-
quences, the Transformer model is used for the encoders
ETRA and ETRB (Vaswani et al., 2017), followed by a lin-
ear layer to reduce the output size to dfeat/2. The features
from both chains are concatenated to form HTCR. The de-
codersDTRA andDTRB adhere to a reverse structure. First,
Hjoint is upsampled by a linear layer, which is followed by
the decoding Transformer. Finally, a softmax layer is used
to predict the residue at each sequence position.

RNA: Following (Lotfollahi et al., 2019; 2020b), XRNA

is passed through the encoder ERNA built from multiple
blocks each consisting of a fully-connected layer, batch
normalization, Leaky ReLU activation, and a dropout layer.
The last layer transforms the output linearly to the same
dimensionality dfeat as the concatenated TCR features to
avoid domination of one modality over the other. DRNA

follows the reverse architecture of ERNA.

2.2. Mixture Module

The Concatenation Module concatenates HTCR and
HRNA and passes the joint feature vector through a multi-
layer perceptron Ejoint to estimate the joint posterior
q(Zjoint|HRNA, HTCR), from which the joint embedding
Zjoint is sampled via the reparameterization trick (Kingma
& Welling, 2013)(Figure 1b). Finally, Zjoint is passed into
the shared decoder Djoint and its output is fed into the
decoders of both modalities DRNA and DTCR.

The PoE Module uses separate encoders ERNA 2 and
ETCR for each modality to estimate individual marginal
latent distribution q(ZRNA|HRNA) and q(ZTCR|HTCR)
(Figure 1c). Here, Zjoint is sampled via the reparameteri-
zation trick from the closed-form solution of the product of
both distributions

q(Zjoint|ZRNA, ZTCR) = p(Z)

N∏
i

q(Zi|Xi), (1)

where N represents the number of modalities and p(Z)
a zero-mean, univariant Gaussian prior. After sampling,
Zjoint is passed to both encoders ETCR and ERNA 2 in
addition to the corresponding marginal distributions ZRNA

and ZTCR. Thereby, the model is trained to preserve in-
formation specific to each modality individually, while si-
multaneously capturing features shared across them. All
encoders and decoders of the mixture module were built
from fully-connected blocks similar to the RNA module.

2.3. Training Procedure

The loss function consists of three weighted parts. The
model is optimized towards reconstructing its input data by
using the Mean Squared Error loss forXRNA and the Cross-
Entropy loss for XTCR. Additionally, the latent distribu-
tions q(Z|XRNA, XTCR) or q(Z1|XRNA), q(Z2|XTCR),
and q(Z3|XRNA, XTCR) are regularized by the Kullback-
Leibler divergence to resemble a zero-mean, univariant Nor-
mal distribution.

Ltotal = LscRNA + λ1LTCR + λ2LKDL (2)

The hyperparameters of the network were selected with
Optuna (Akiba et al., 2019) to either optimize the recon-
struction loss or a dataset-specific downstream task. For
task-specific training, the loss weights were included in this
search, while for reconstruction they were fixed such that
the losses from both modalities have the same magnitude.
To avoid overfitting, cells from rare clonotypes (i.e., cells
with the same TCR sequence) were oversampled.
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3. Results
We compared our models in various downstream tasks
against unimodal baseline models trained on either RNA or
TCR information. These baseline models followed the same
overall architecture but were trained using only a single
modality.

First, we analyzed the dataset provided by 10x Genomics
consisting of paired single-cell TCR, transcriptome, and epi-
tope specificity information of over 150,000 CD8+ T cells
from four donors (10x Genomics, 2019). To avoid batch
effects, the models were trained for donor 1 and 2 separately.
Due to limited diversity in epitope specificity, we excluded
donor 3 and 4 in our analysis. For model training and down-
stream tasks, cells with unknown or rare epitope specificity
were removed. Second, our models were evaluated on the
dataset described in (Fischer et al., 2020), which shows
T cell reactivity towards a mix of SARS-CoV-2 epitopes
(Gene Expression Omnibus, GSE171037). The cells were
split into training, validation, and test set of approximately
70%, 15%, and 15% for the 10x Genomics dataset and 80%,
10%, 10% for the smaller SARS-CoV-2 dataset, respectively.
To avoid data leakage, cells from the same clonotype were
assigned to the same subset.

3.1. Multimodal learning improved T cell clustering

To investigate whether cell states and functionality are better
captured in the joint than in unimodal embeddings, we in-
vestigated the latent spaces of donor 1 of the 10X Genomics
dataset (Figure 2) . The embedding of the model trained
on TCR data was dominated by multiple smaller clusters
representing similar or identical clonotypes. However, it
failed to accumulate T cells with the same epitope speci-
ficity but expressing dissimilar sequences. The RNA-only
model formed larger clusters of cells with the same speci-
ficity. However, clear separation of subclusters could be
observed in T cells specific to the Cytomegalovirus epitope
KLGGALQAK (Figure 2, red). The joint models embedded
T cells with identical cognate epitopes into less fragmented
and clearer separated clusters. These findings suggest that
the joint models learned to combine complementary infor-
mation from both modalities, which represent cellular func-
tionality better than separate embedding.

This was also reflected in quantitative evaluations measured
by the Average Silhouette Width (ASW) and the Normalized
Mutual Information (NMI). ASW measures intra-cluster co-
hesion compared to inter-cluster separation, where higher
values indicate clearer clustering. NMI is an external metric,
which evaluates how much information is shared between
the assigned cluster and ground-truth labels. In particular,
NMI is the harmonic mean between homogeneity and com-
pleteness, thereby measuring the pureness in clusters as
well as the fragmentation of labels between clusters. During

Table 1. Comparison of single- and joint-modality embedding by
cluster evaluation based on ASW and NMI on different datasets.

RNA TCR Concat PoE

10x Donor 1 ASW 0.14 -0.18 0.30 0.36
Specificity NMI 0.62 0.49 0.73 0.49

10x Donor 2 ASW 0.00 -0.10 0.27 0.38
Specificity NMI 0.34 0.28 0.39 0.37

SARS-CoV-2 ASW 0.00 0.09 0.13 0.19
Cell type NMI 0.12 0.30 0.38 0.37
Reactivity NMI 0.02 0.18 0.19 0.24

Table 2. Comparison of single- and dual-modal embeddings of the
10x Genomics dataset by kNN specificity-prediction between an
atlas and a query dataset. All values represent the class-weighted
F1-score.

RNA TCR Concat PoE

10x Donor 1 0.73 0.67 0.73 0.69

10x Donor 2 0.75 0.86 0.87 0.90

analysis, Leiden clustering (Traag et al., 2019) was used
on the embeddings reporting the maximum metric resulting
from three different clustering resolutions (0.01, 0.1, 1.0;
Table 1). For the 10x Genomics dataset, epitope specificity
was used as an external label to calculate the NMI, while
for the SARS-CoV-2 dataset, scores were reported for cell
type (CD4+ or CD8+ T cells) and reactivity toward a SARS-
CoV-2 Spike epitope mix (CD4+ reactive, CD8+ reactive and
unreactive T cells). For each dataset, at least one joint model
outperformed the single modality models for each metric.
This supports the qualitative findings that joint modeling
improves clustering of T cells with higher intra-class coher-
ence and inter-class separation while representing specificity
as well as functionality better.

Additionally, T cell embeddings should preserve biologi-
cal signals such as cell state beyond epitope specificity and
cell type. To test this, we performed differential expression
analysis (excluding TRA/B genes) to determine the most
characteristic marker gene of each Leiden cluster ( Figure
2 ). Here, we showcase how two selected marker genes
(IL7R, GZMH) are distributed in the embedding spaces
(Figure 2). Note, that these observations also hold true for
the top characteristic genes of the remaining clusters as
well. The selected genes are expressed in different stages
of T cell development. The IL7R (Figure 2 e-f) encodes
the IL7 receptor, which interacts with IL17 during T cell
development, in particular during V(D)J recombination to
form the final TCR-sequence (Schlissel et al., 2000). High
expression of this gene, therefore, indicates a T cell during
proliferation. GZMH (Figure 2 i-l) gives rise to a cytotoxic

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE171037
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Figure 2. Uniform manifold approximation and projection (UMAP) (McInnes et al., 2018) visualization of the T cell embedding from
donor 1 of the 10x Genomics dataset. The columns represent the latent space of the different uni- and dual-modal models. (a-d) are
colored by epitope specificity. (e-l) are colored by the normalized and log-transformed gene expression counts of IL7R and GZMH.

protease that induces cell death to infected host cells (Fel-
lows et al., 2007) and is therefore expressed in the effector
development stages. Gene expression patterns were clearly
preserved in both joint and the RNA-only models. While
in the TCR-only embedding, marker genes were arbitrarily
distributed in multiple clusters. The joint model seemed
also to cluster T cells hierarchically first by epitope speci-
ficity and secondly on gene-level creating subpopulations of
cells with similar cell states, thus providing a more informed
representation when studying human T cell repertoires.

3.2. Joint latent space learning improved specificity
prediction

While specificity is mainly attributed to the TCR, transcrip-
tome information contains TRA and TRB genes, which
determine the set of possible sequences during TCR de-
velopment. Additionally, previous works (Schattgen et al.,
2020) revealed that T cells with a common ancestor express
a similar transcriptional profile. Therefore, the antigen-
specificity can be inferred from the gene expression data
as well. We evaluated whether a joint embedding of both
modalities can improve TCR-specificity imputation over
unimodal models, thereby substantiating the improved ex-
pression of the joint latent space. The ability to perform
imputation of missing specificity in the embedding space
was evaluated by using the cells from the training data as
an atlas set and predicting the binding epitopes with a k-
Nearest Neighbor (kNN) classifier for the test set. This is
especially challenging since the data split prevents common
clonotypes between atlas and query set. The joint models

perform on-par with the RNA model on donor 1 of the 10x
Genomics dataset, while they outperform both unimodal
models for donor 2 (Table 2). Interestingly, TCR-specificity
could be better inferred by gene expression than by TCR
sequence in donor 1 and vice versa in donor 2. The joint
model however performed on-par or better than the uni-
modal models in both donors, indicating that our model was
able to represent relevant aspects of T cell functionality by
capturing and combining complementary information from
both modalities in an intelligent manner.

4. Conclusion
In this work, we proposed mvTCR, a VAE to embed T cells
based on their transcriptomes and TCR-sequences jointly.
Extensive experiments show mvTCR can synergistically
combine this complementary information to enrich the rep-
resentation of single-cell data and captures patterns that
would have been missed when interpreting each level inde-
pendently. Our model achieves better T cell clustering based
on functionality and cell state and reveals subpopulations
of different cell states within the epitope specific cluster-
ing. We further showed that a joint embedding improves
the imputation of unknown epitope specificity. We envision
future works will make such representations transferable to
new studies (Lotfollahi et al., 2020a) and also improve the
interpretability of the latent space (Rybakov et al., 2020).
Overall, mvTCR offers a more holistic view of T cell reper-
toires at single-cell resolution and therefore has the potential
of leading to profound insights into T-cell biology.
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