
Towards better understanding of developmental disorders from integration of
spatial single-cell transcriptomics and epigenomics

Guojie Zhong * 1 Jiayao Wang * 1 2 Siyu He * 3 Xi Fu * 2

Abstract
The recent emerging techniques of single cell
spatial RNA seq makes it possible to profile
the transcriptomics data at single cell resolution
without loss of the spatial information. However,
it is still a challenge to measure epigenomics
profiles at spatial levels. In this project, we
developed an autoencoder based multi-omics
integration method and applied it on spatial
mouse fetal brain data to reconstruct the spa-
tial epigenomics profiles. We compared our
method with LIGER and showed its better
performance on a public dataset measured by
latent mixing metrics. We further developed a
CNN model to predict autism risk genes based
on the spatial RNA seq data. Our model is
able to prioritize autism risk genes from whole
genome level. Code of our project can be found at
https://github.com/explorerwjy/ML genomics.git

1. Introduction
Recent advances in single cell sequencing technologies are
able to profile genetic, epigenomics and transcriptomic data
at single cell resolution within the whole tissue or organs,
providing the ability of identifying cell heterogeneity and dy-
namical developments. The emerging techniques of spatial
transcriptomics complement the spatial information of the
tissue, making it possible to study the cell-cell interaction in
a systematic way. However, current methodologies haven’t
been able to measure epigenomics profiling at spatial lev-
els, which is important for a comprehensive understanding
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of organogenesis and pathogenesis of human genetic dis-
orders. Multimodal spatial techniques that simultaneously
measure the spatial transcriptome and epigenomics in the
same samples have not yet been developed, without which
the accuracy of downstream analysis could be heavily af-
fected by the batch and sample variations. Thus, there is a
highly unmet need for developing an integrated method for
simultaneously analyzing transcriptomic and epigenomic
data in the perspective of both spatial and single cell level.

The overarching aim of this project is to develop new com-
putational methods to integrate the spatial scRNA-seq and
non-spatial scATAC-seq data and leverage such information
to improve power of risk gene discovery in disease genetics
studies.

2. Methods
2.1. Data sets and preprocessing

In this project, we integrated four datasets: scATAC-
seq(Preissl et al., 2018), scRNA-seq(Cao et al., 2019), spa-
tial RNA-seq (Liu et al., 2020) and exon sequencing (Feli-
ciano et al., 2018). We mapped those scRNA-seq, spatial
RNA-seq and scATAC-seq to the spatial coordinates of the
brain regions and identified some spatial patterns may asso-
ciated to Autism spectrum disorders (ASD).

The spatial RNA-seq dataset(Liu et al., 2020) used deter-
ministic barcoding in tissue for spatial omics sequencing
(DBiT-seq) for co-mapping of mRNAs and proteins in a
formaldehyde-fixed tissue slide via next-generation sequenc-
ing. Gene expression profiles in 10 µm pixels conform to
the clusters of single-cell transcriptomes, allowing for rapid
identification of cell types and spatial distributions. DBiT-
seq was conducted in 10 µm and 25 µm pixel size to ana-
lyze the whole embryo and brain region of mouse embryo
(E10–E12), respectively. Data was downloaded from GEO
with the accession number GSE137986.

The scATAC-seq dataset(Preissl et al., 2018) applied a com-
binatorial indexing assay to profile genome-wide chromatin
accessibility in ∼100,000 single cells from 13 adult mouse
tissues. They identify 85 distinct patterns of chromatin ac-
cessibility, most of which can be assigned to cell types,
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and ∼ 400,000 differentially accessible elements. Data
was downloaded from GEO with the accession number
GSE111586. Peak signals were summarized into gene level
(gencode vM25), by mapping peak genomic locations to
gene’s promoter regions (3k bp upstream of transcription
start site) plus gene body(Welch et al., 2019).

The scRNA-seq dataset(Cao et al., 2019) profiled the tran-
scriptomes of around 2 million cells derived from 61 em-
bryos staged between 9.5 and 13.5 days of gestation in a
single experiment. We downloaded the data from GEO with
the accession number GSE119945, keeping 14 brain-related
cell types in 10.5 day of gestation as annotated in the study.

The exon sequencing dataset(Feliciano et al., 2018) we are
using is the largest exome sequencing study of autism spec-
trum disorder (ASD) to date (n = 35,584 total samples,
11,986 with ASD). They used an enhanced analytical frame-
work to integrate de novo and case-control rare variation and
identify 102 risk genes at a false discovery rate of 0.1 or less.
Here we used their high confident genes as our candidate
genes for ASD.

2.2. An autoencoder based method for integration of
multi-omics datasets

We developed an autoencoder model for integration of multi-
omics datasets. For each cell i in each batch k, the input will
be the observed gene countsXik. The shared encoderNNE

will encode it to a d-dimensional latent space representa-
tion, Zik, which could be interpreted as the expression level
of several “meta genes” of that cell. Different batches will
share an encoder. For each batch k, the decoder part will con-
sist of a shared decoder, NND, as well as a dataset specific
NNBk

, which will decode the latent space representation
to two reconstructed output, Wik and Vik , correspondingly.
Wik represents the shared characteristics through datasets
while Vik represents the dataset specific characteristics, in
other words, batch effect. The loss function is defined as:

∑
i

∑
k

‖Vik +Wik −Xik‖2 + λ ‖Vik‖2 (1)

Under this loss function the encoder and decoder will be
trained to minimize the dataset specific characteristics while
keeping as much useful information as possible in the latent
representation for reconstruction. The dimension of Zik , d
and the loss term λ, are the hyperparameters. In practice we
use d = 20 and lambda = 5. For all the neural networks,
we used one layer of fully-connected network followed
by a ReLU activation layer. We implemented our model
in pytorch and trained 20 epochs on PBMC(Zheng et al.,
2017) data, 5 epochs on mouse fetal brain data. The latent
representation of cells were used to compare with LIGER
and perform downstream analysis.

Figure 1. Autoencoder model

2.3. Latent mixing metric

The latent mixing metric was adopted from (Gayoso et al.,
2021), which measures how well the latent cell represen-
tations are mixed between batches relative to the global
frequency of batches. The entropy is calculated as:

KL(p(n)||q) =
B∑
i=1

p
(n)
i log

p
(n)
i

qi
(2)

where p(n)i denoted the frequency of cell type i in the 100
nearest neighbors of cell n. qi denoted the global frequency
of cell type i. We ran 50 times to get the average entropy,
and in each run, we randomly selected 100 cells as the
objects.

2.4. Cluster mixing metric

The cluster mixing metric measures how well the cells clus-
tering is consistent with the biological cell type annotations.
We first performed a graph-based clustering using Pheno-
graph (Levine et al., 2015) on the latent representation of
cells. The predicted cell type for each cluster was then de-
fined as the most frequent cell types in each cluster. To
evaluate the performance, We calculated the confusion ma-
trix to compare the predicted cell type versus the original
biological annotated cell types.

2.5. KNN to identify and validate cell type

We applied a KNN method to identify the spatial scRNA
cell type from the annotated non-spatial scRNA-seq dataset.
For each grid in spatial scRNA-seq, we chose the nearest k
scRNA cells in the latent-cell matrix and used their majority
annotated cell types as the prediction. We will compare this
annotation with the brain anatomical annotations as an eval-
uation of the performance of LIGER and our Autoencoder
model.



Towards better understanding of developmental disorders from integration of spatial single-cell transcriptomics and
epigenomics

2.6. Phenograph to cluster cells and aligning the cell
type

We utilized the Phenograph(Levine et al., 2015) method to
cluster the cells of multi-omics data based on their shared
cell embedding matrix. Phenograph also used KNN and
Jaccard graphs with the Minkowski metric. We annotated
the cell type of scATAC and spatial RNA based on the pre-
annotated scRNA by determining the majority cell types in
each cluster.

2.7. CNN to predict autism genes with spatial
expression data

In order to investigate spatial patterns of autism risk genes,
we used a convolutional neural network model to predict
disease risk. We collected 88 well known autism risk
genes from the SFARI (Simons Foundation Autism Re-
search Initiative) Gene database(Banerjee-Basu & Packer,
2010). which are genes strongly implicated in autism based
on expert curation from the literature. For negative genes,
we collected 977 genes with at least 1 de novo LGD (likely-
gene disrupting) or missense variant in unaffected siblings
and no mutations in probands, from an exome-sequencing
study(Iossifov et al., 2014). Since we are using mouse de-
veloping spatial RNA-seq data, we map the genes to mouse
homologs(Hayamizu et al., 2005)(Smith & Eppig, 2009),
which leaves 85 and 853 autism positive/negative genes re-
spectively. Spatial RNA-seq data on the E10 mouse brain
of each gene was transformed to 50 x 50 x 1 tensors, each
pixel is one spatial spot that DBiT-seq has measure expres-
sion on. We normalized the UMI counts to (0,1) scale,
since we would like to capture spatial patterns rather than
the expression level of those genes. In order to access the
model performance, we split the data as 70% training and
30% testing set, and for data in training set, we produce
pseudo-training data by adding small amount of UMI to ran-
dom spatial spot of real data, to increase sample size, to the
model would be robust to noise and prevent overfitting. For
convolutional neural net models, we used 2 convolutional
blocks followed by 2 linear fully connected layers. Each
convolutional block consists of a 2D-convolutional layer, a
batch normalization layer, one ReLU and one Max Pooling
layer. Before each fully connected layer we also used a
dropout layer with drop out rate 0.2. Model architecture
shown in Fig 5A. Considering the fact of very small sam-
ple size, we used a simple model architecture with heavy
regularization.

3. Experimental Results
3.1. Autoencoder model performed better than LIGER

in latent entropy

To evaluate the performance of autoencoder and LIGER, we
selected two types of metrics: latent mixing metric and clus-
ter mixing metric. We first tested the latent mixing metric
in PBMC(Zheng et al., 2017) datasets, which the cell type
annotation has been well studied and evaluated. Figure 2A
demonstrated the latent entropy of autoencoder was lower
than LIGER, which indicated the relationship between cell
type and latent was less disordered in autoencoder, and la-
tent space of autoencoder presented the cell types better
than LIGER. Then we performed cluster mixing metric by
measuring the accuracy of cell type annotation. Figure 2B
and Figure 2C presented the tSNE map of latent space of
LIGER and autoencoder colored by real cell types, and Fig-
ure 2D and Figure 2E showed the tSNE map of latent space
of LIGER and autoencoder colored by clusters identified by
Phenograph. We plotted the confusion matrix (Figure 2F
and Figure 2G) to evaluate the accuracy of predicted cell
types. Figure 2H, Figure 2I showed the classification reports
as well as the accuracy and F1 scores. Though the overall
accuracy of the autoencoder is worse than LIGER, it still
got a 0.73 accuracy and F1 score 0.86 and 0.92 at B cell and
Monocyte CD4 cells.

3.2. Spatial mapping of single cell data

We first performed the latent mixing metric on the single
cell RNA expression of an E10 mouse embryo. The re-
sults demonstrated the lower entropy of AE method than
LIGER (Figure 3A). analyzed the spatial transcriptome of
an E10 mouse embryo from the DBiT-seq with a resolu-
tion of 25um. Figure 3B showed the bright field of the
mouse brain region, including nostrils, telencephalon, mes-
encephalon, rhombencephalon. We first preprocessed the
spatial RNA data and plotted the UMI counts on the same
map (Figure 3C). The sequencing depth is acceptable and
comparable with scRNA. Figure 3D-F exhibited several
examples of latent distribution of autoencoders on spatial
transcriptome. Some patterns were indicated in the images.
Figure 3G and Figure 3H plotted the tSNE of the single cell
colored by the clusters determined by phenograph. By the
method of KNN as described above, we obtained the maps
of cell type in the mouse brain region (Figure 3I). Based
on the results, excitatory neurons have not developed much
yet in the E10 embryo. Then we also plotted the tSNE map
of scRNA, scATAC, and spatial RNA colored by the cell
types and datasets type (Figure 3J). The result indicated
the spatial RNA and scATAC conformed well with scRNA.
Meanwhile, we also used Phenograph to cluster the cells
to identifying the cell types based on the pre-annotated cell
types in scRNA data. Both methods showed similar neuron
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type maps among brain regions. Surprisingly, we identified
a bunch of sensory neurons around the region of the trigem-
inal ganglia, which is considered as the sensory ganglion of
the trigeminal nerve that occupies a cavity in the dura mater.

A B

C D E

F G

H

I

tSNE of latent space in LIGER

tSNE of latent space in AE tSNE of latent space in LIGER tSNE of latent space in AE

Figure 2. Evaluation of autoencoder (AE and LIGER with PBMC
data. A) Entropy of AE and LIGER B) tSNE of latent space in
LIGER, colored by cell type. C) tSNE of latent space in AE, col-
ored by cell type. D) tSNE of latent space in LIGER, colored by
Phenograph cluster. E) tSNE of latent space in AE, colored by
Phenograph cluster. F) Confusion matrix of predicted types by
LIGER and true types. G) Confusion matrix of predicted types by
AE and true types. H) Classification report of LIGER. I) Classifi-
cation report of AE.

Another spatial RNA data that zooms in the eye region

confirmed the same identification of the sensory ganglion
clusters, with a higher resolution (Figure 3J). Meanwhile,
we noticed a large proportion of oligodendrocyte progeni-
tors near the eye regions, corresponding to the area of optic
stalk. Radial glia and neural tubes have identified as the
largest percentages of neural cells. Postmitotic premature
neurons were identified near the hinder brain and cerebral
cortex, which correspond to the specification of excitatory
neurons. Figure 3K showed the cell annotation by autoen-
coder. The result was different with what LIGER acquired,
but autoencoder identified a large quantity of neural tubes,
which played an important role at the brian development.
Figure 3L and Figure 3M demonstrated the cluster map of
the factor matrix of cells in data with AE and LIGER re-
spectively. It indicated the shared latent features of some
cells, corresponding to the cell type specific features, and
also indicated the shared features among scRNA, spatial
RNA and scATAC. Then we mapped the scATAC data by
finding the closest nearest neighbor in each spatial spot of
spatial transcriptome, and mapping latent space of ATAC on
to spatial RNA space. Superisely, we figured out the latent
space of scATAC still exhibited spatial resolution and infor-
mations, which further indicated the usefulness of studying
spatial features of ATAC sequencing, such as exploring the
risk genes at spatial resolution. Overall, the results sug-
gested that our autoencoder performed pretty well in finding
latent features by integration of multi-omics data, and able
to recapitulate some specific patterns of the developmental
processes.

3.3. Autism genes and prediction with spatial
expression patterns

In order to visualize expression patterns of autism can-
didate genes, we select candidate genes from the SFARI
dataset(Banerjee-Basu & Packer, 2010). We compute the
expression specificity of each spatial location as a Z score
of UMI compared to all other spatial locations, for the same
gene, And expression specificity of the candidate gene set as
the average of Z-scores of all candidate genes. As shown in
Figure 4, We notice mean ASD gene expression specificity
(Figure 4A) has a high correlation with axonogenesis and
hindbrain neuron development, as well as telencephalon
development and regionalization(Liu et al., 2020). We also
notice that ASD genes have distingic spatial expression pat-
terns (Figure 4B) . Some genes like Adnp or Dscam, are
specifically expressed in certain locations, while other genes
like Chd8 and Dyrk1a, show a ubiquitous expression across
the fetal brain.
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Figure 3. Spatial RNA and ATAC prediction in the E10 mouse
brain region. A) Entropy of AE and LIGER with E10 mouse
brain data. B) bright field of E10 mouse brian region. C) UMI
distribution of DBiT-seq data. D-F) Distribution of latent variables
at dimension 1/2/3 by autoencoder. G) tSNE plot colored by
cell clusters (by Phenograph) on the LIGER latent. H) tSNE plot
colored by cell clusters (by Phenograph) on the Autoencoder latent.
I) Predicted cell type on E10 mouse brain by LIGER. J) Predicted
cell type on E10 mouse eye region by LIGER. K) Predicted cell
type on E10 mouse brain by Autoencoder. L) Cluster map of AE
latent. M) Cluster map of LIGER latent. N) Mapped spatial ATAC
latent distribution.

With evidence that autism genes do have distinct spatial
expression patterns, we used a simple CNN to learn autism
spatial expression features and predict autism genes based
on that. Figure 5A shows the architecture of CNN model.
Considering the small number of well known autism genes
we can use as positive training data, we only used a 2-layer
CNN with a heavy regularied model. Despite that, the model
is still overfitting on training data. As Figure 5B shows, the
model achieves AUC = 0.944 on training data but only AUC
= 0.738 on the testing set. In order to evaluate our scores’s
ability to distinguish autism genes, we used a largest pub-
lished dataset on autism trio exome sequencing(Rodgers

et al., 2016). We calculate de novo enrichment (observed
number of mutations divided by expected number of muta-
tions) of groups of 1000 genes, genes were sorted by our
prediction score. We took out genes that appear in training
data to prevent overestimating our score performance. From
Figure 5C and D, we can see genes with larger prediction
scores have a larger burden of both LGD and damaging
missense mutations, which means our scores are able to
pick out autism risk genes. For example, the top 1000 genes
with the highest prediction score have an LGD burden of
2.16, much greater than the whole genome level of 1.33.
Interestingly, the top gene group didn’t have the highest
damaging missense score (defined by MPC score > 1(Ke
et al., 2017)), the 3rd highest gene group has the largest
burden of 1.55, compared to genome wide level of 1.11,
which means autism genes may have different contribution
from LGD and damaging missense mutations.

Figure 4. Spatial expression of Autism genes in the fetal brain.
(A): Expression specificity of all ASD candidate genes and (B):
Expression specificity of selected ASD candidate genes

Figure 5. Autism risk predicted by CNN. (A):CNN architecture
(B): ROC curve of prediction on held out testing set. (C) : LGD
enrichment of genes sorted by prediction score. (D): Damaging
missense mutations (DMis) enrichment of genes sorted by predic-
tion score. From right to left are groups of genes with high to low
prediction scores. Horizontal lines represent genome-wide burden
of each mutation class (with training autism genes removed).
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4. Discussion
In this project, we developed a new multi-omics integration
method and compared it with LIGER. Our model showed
higher latent mixing metrics while slightly worse clustering
mixing metrics compared to LIGER, which could be due
to the Phenograph clustering algorithm. We have to notice
although autoencoder is a powerful tool to learn latent repre-
sentations of the data, there is still space to for improvement
to get a better performance in more applications.

Our CNN model is, to our best knowledge, the first model
that utilizes 2D spatial expression patterns of genes in pre-
dicting disease risk genes. The biggest challenge of these
types of tasks is lack of training data. CNN is a powerful
machine learning tool for capturing features in 2D space
but also requires a large amount of training data. There are
20,000 protein coding genes in total, among which dozens
have been proved associated with Autism, out model can
still work in prioritizing the rest genes with limited data
points. Our results suggest that genes associated with autism
do have spatial patterns in early embryo development, which
can be used to further understand the disease mechanism.
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