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Abstract

Single cell multi-omics technology is able to mea-
sure multiple data modalities at single cell resolu-
tion, such as gene expression level (using single
cell RNA-sequencing) and chromatin accessibility
(using single cell ATAC-sequencing). Integrating
scRNA-seq and scATAC-seq data profiled from
different cells is a challenging problem. Existing
methods often require that the scRNA-seq and
scATAC-seq data cover the same cell types, that
is, the same clusters. However, this is often not
true for many existing datasets. Here we propose
a joint matrix tri-factorization algorithm scJMT
that is capable of integrating and clustering cells
from both modalities of data in the case where the
two data modalities do not share exactly the same
cell types. The tri-factorization framework also al-
lows us to obtain clusters of genes and chromatin
regions, and the association matrices between cell
clusters and gene or region clusters. We show that
scJMT is superior to two state-of-the-art meth-
ods under both scenarios where the two modalities
have the same or different cluster compositions.

1. Introduction

The availability of single cell multimodal omics data pro-
vides a comprehensive view of each single cell. Single
cell RNA-sequencing (scRNA-seq) and single cell ATAC-
sequencing (scATAC-seq) respectively measures the gene-
expression and chromatin accessibility profiles of cells, each
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being considered as an important aspect of a cell. Recently,
techniques which can measure both gene-expression and
chromatin accessibility in the same cells have been pro-
posed (Chen et al., 2019; Cao et al., 2018; Ma et al., 2020),
but these technologies are still not widely used, and they
can suffer from low sensitivity of one of the data modal-
ities. To make use of the enormous amount of existing
data, computational methods have been proposed to inte-
grate sScCRNA-seq and scATAC-seq data obtained separately
in different batches (Stuart et al., 2019; Welch et al., 2019;
Duren et al., 2018; Korsunsky et al., 2019; Cao et al., 2020),
by removing the batch effect and grouping the cells with
similar biological identity together across data modalities.

Existing methods which can integrate scRNA-seq and
scATAC-seq data from different cells use various optimiza-
tion objectives. Some methods aim to integrate datasets
and learn their latent embedding such that the latent em-
bedding can reconstruct the original datasets (Welch et al.,
2019; Duren et al., 2018; Argelaguet et al., 2020). Some
use manifold alignment (Cui et al., 2014) and aim to learn
the latent embedding by enforcing the latent embedding to
preserve the pairwise distances of cells in the original high-
dimensional space (Singh et al., 2020; Cao et al., 2020).
Seurat (Stuart et al., 2019) maps a query dataset to a ref-
erence dataset, and obtain a new data matrix for the query
dataset based on the reference dataset. However, most of
these methods were designed with the assumption that the
cell type composition is the same for both data modalities
and it is not clear how they perform when the two data
modalities do not share exactly the same cell types.

Here we design a joint matrix tri-factorization framework
(scJMT), which decomposes a single cell data matrix into
a cell factor, a feature factor, and an association matrix rep-
resenting the correspondence between the cell and feature
factors. By confining the factor representation of each entity
to be simplex, the latent factor can be interpreted as a joint
soft clustering result and each latent dimension corresponds
to one cluster identity. In order to connect the features in
different data modalities (in our case, the genes in SCRNA-
seq dataset and regions in scATAC-seq dataset), we use a
pre-defined gene activity matrix, which has been used in
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existing work (Welch et al., 2019; Duren et al., 2018; Stuart
et al., 2019) (Fig. 1).

scJMT outperforms both Liger (Welch et al., 2019) and
CoupleNMF (Duren et al., 2018) in terms of integrat-
ing the modalities and correctly clustering cells into cell
types. scJMT also has unique features compared to ex-
isting method which is that it can learn feature (gene or
region) clusters and association matrices while learning the
cell clusters, which will be benchmarked in our future work.
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Figure 1. scJMT considers all the data matrices as relationship
matrices between entities, and the latent factor of the same entity
is shared between relationship matrices.

2. Methods

2.1. Matrix tri-factorization

We consider a data matrix where the two entities both have
cluster structure. A matrix tri-factorization approach can
cluster the two entities while learning the association re-
lationship between the clusters of the two entities. For
example, in a scRNA-seq count matrix, the two entities are
cells and genes, each forming certain number of clusters.
Furthermore, there can be correspondence between the cell
and gene clusters, where the clusters of genes corresponding
to a cluster of cells are considered as marker genes for that
cluster. In a matrix tri-factorization model, a data matrix
X is assumed to be the product of three matrices C;3C;,
where C; and C; are the cluster identification matrices of
the two entities, and X is the association matrix between
the clusters of the two entities. We find estimates of C;, X
and C; that minimize the reconstruction error:

G, 3, Cj = argming, ¢, s/[X — C.ECi% ()

We apply tri-factorization to both the scRNA-seq and the
scATAC-seq data matrices. We assume that one cell or fea-
ture only belongs to one cluster when performing clustering,
where one cell only has one cell type identity, and the same
is true for a feature. This assumption makes each row of
C, or C; to be a one-hot cluster indicator vector for each
cell. Finding such binary C; and C; matrices is computa-
tionally intractable (Anagnostopoulos et al., 2008). So, we

relax the problem into a soft clustering problem by consid-
ering the cluster membership of each cell as a probability
instead of a binary value. As a result, each row of C; or
C; is constrained to be a simplex. Using soft clustering
relaxation provides another advantage: soft clustering can
better preserve the cell heterogeneity within each clusters,
even cells in the same clusters have slightly different cluster
indicator vector, and this vector can be used as a latent cell
embedding.

2.2. Single Cell Joint matrix tri-factorization (scJMT)

We develop a single cell joint matrix tri-factorization
(scJMT) approach to integrate unpaired scRNA-seq and
scATAC-seq data, where cells from both data matrices,
genes, and regions are jointly clustered, and associations
between cell and gene clusters (from the scRNA-seq data),
and between cell and region clusters (from the scATAC-seq
data) are learned.

As shown in Fig. 1, when integrating scRNA-Seq and
scATAC-Seq data with cells from different batches, the
binary relationships between chromatin regions and genes
which represent which region affect which gene are needed.
This is often in the form of a gene activity matrix, and is
typically determined by the relative distance between genes
and regions on the genome. Denoting the scRNA-Seq data
matrix by G where rows correspond to cells and columns
correspond to genes, the sScATAC-Seq matrix by R where
rows correspond to cells and columns correspond to regions,
and the gene activity matrix by A where rows and columns
correspond to respectively genes and regions. The objective
function of scJMT is:

argming, ¢, c,.C,.£,.2,.b,.b. £
s.t. )
Ci1=1,C;>0,i=1,2g,r

where
L=a|R-C;3,C, —b; —bl|%
+ o2]|G — C23,Cy — by — b |1
tr(3,27) tr(CYAC,)
— Q3 — Qg
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In the equation above, C; and Cs are the cell factors
for scATAC-Seq data and scRNA-Seq data. C, is the
gene factor and C,. is the region factor. X, and X, are
the association matrices of scATAC-Seq and scRNA-Seq
data. by, bs, by, b, are vectors that correspond to cell- and
feature- (gene and chromatin region) specific bias. In ad-
dition to the tri-factorization term, we include two cosine
similarity term to enforce the matching of cell and feature

clusters between modalities. The gene activity matrix A is

. . e tr(CTAC,) .
used in the cosine similarity term —=——3%x~— in order
y [C,TFIIAC, Tr
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to match the latent factors of genes and chromatin regions.
tr(=,.=7)
The term s i

modalities to have similar association property with features
between data modalities.

forces the cell clusters from the two

When dealing with the scenario where the two modali-
ties have different cluster compositions, we include two
additional regularization terms to guide the framework to
learn the correct clusters. Assume the cells from the two
data modalities each has N; and N, clusters, but only &
(k < min{ Ny, Na}) of them are shared across modalities.
We assign latent dimension of N7 4+ Ny — k to all cluster
indicator matrices (Cy, Cs, Cy and C'.). The first £ dimen-
sions correspond to the shared clusters, dimensions from
k 4+ 1 to N7 correspond to the batch specific clusters for
the first batch, and the remaining dimensions correspond to
that specific to the second batch. We then would like to in-
clude two additional regularization terms, ||C1(:, (N7 +1) :
(N1 + No — k))||% + [|Ca(:, (k+ 1) : N1)||%, into the loss
function (Eq. 3). By minimizing the first term, we enforce
that no cell in the scRNA-seq data falls into clusters Ny + 1
to N1 4+ Ny — k. And by minimizing the second term, we en-
force that no cell in the scATAC-seq data falls into clusters
k+1to V.

We minimize the loss function using mini-batch stochastic
gradient descent. Within each step, we pick one parameter
matrix from C;, C,, Cy, C,,, 3, 3, and fix all the other
parameters. Then, we update a mini-batch of the selected
parameter matrix using gradient descent. We loop through
all the parameters and update them one by one. We update
the bias terms (b, ba, by, b;.) using closed form solution by
setting the gradient of it to zero, and we take latent factors
into a softmax function in order to enforce the simplex
constraint. Since the optimization problem is non-convex,
gradient descent can converge to a local minimum point.
So we run the algorithm independently multiple times with
different random seeds, and select the one with the smallest
loss value. The pseudo-code of the algorithm is as follows:

Algorithm 1 single cell joint matrix tri-factorization
1: function SCJMT(G, R, A, batchsize)
2: Initialize C,, C,, C,, C,, ¥, and X, using
N(0,1)

3: fortin1,2,--- T do

4: //Sample mini-batch

5: R,., G, A, = Sample(R, G, A, batchsize)
6: for Xin {C;,b;, X, %, (i =1,2,9,7)} do
7: if X # b; then

8: X=X - VLR, G, An)

9: else
10: X = argminx L(R,,, G, A

return Cy, Cy, C,, C,, Xy and X,

3. Results

We generate simulated datasets using an extended version of
SymSim (Zhang et al., 2019). SymSim is able to generate
scRNA-Seq data that resembles real sScRNA-Seq data. We
extend SymSim such that it is also able to generate scATAC-
Seq data, given a gene activity matrix. The data simulation
process is similar to that described in (Zhang et al., 2021).
The process in (Zhang et al., 2021) was used to generate
continuous populations and in this paper we generate dis-
crete populations. We simulate two scenarios. In the first
scenario, cells from different batches have the same cell
type composition. And in the second scenario, one cell type
is missing in one of the data batches.
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Figure 2. (a) The latent factor of cells in one sample dataset learned
by scJMT visualized using UMAP. In the plot on the left, cells are
colored according to modalities, and on the right, cells are colored
according to ground truth cluster labels. (b-c) The ARI scores
of scJMT, Liger and CoupleNMF on simulated datasets. (b)
Scores are calculated on the cell factors before quantile normal-
ization. (c) Scores are calculated on the cell factors after quantile
normalization.

In the first scenario, we generate 6 simulated datasets, each
with 5 clusters. scJMT is able to group cells of the same cell
type into the same cluster regardless of different modalities
(the UMAP (Mclnnes et al., 2018) visualization of learned
cell factor on one of the simulated datasets is shown in Fig
2a). We then measure the accuracy of the inferred clus-
ter ID using Adjusted Rank Index (ARI), and compare the
ARI score of scJIMT with that of Liger and CoupleNMF.
Liger uses an additional post-processing step after ma-
trix factorization to further improve the clustering accuracy,
termed quantile normalization. In order to make an unbiased
comparison, we measure the ARI score of all three methods
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in both cases before and after applying the quantile normal-
ization. The result (Fig. 2b, c) shows that our model con-
sistently achieves a better score compared to CoupleNMF
and Liger.

In the second scenario, we generate 12 simulated datasets
where one data modality (scRNA-seq) has three cell clus-
ters (N1 = 3) and the other (scATAC-seq) has two cell
clusters (N2 = 2). Only two clusters between modalities
are matched (k = 2). We compare the performance of our
model with CoupleNMF and Liger. The cell latent fac-
tor learned by scJMT in one simulated dataset is shown in
Fig. 3a,b. scJIMT successfully integrates cluster 2 and 3
between two modalities and leave unpaired cluster 1, the
unique cluster identity in scRNA-Seq. The ARI scores of
scJMT, Liger and CoupleNMF on all 12 datasets are
shown in Fig. 3¢, scJMT has a higher score compared to
Liger and CoupleNMF.
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Figure 3. (a) The latent factors of cells in one sample dataset
learned by scJMT. In the sample data one cluster is missing in
ScATAC-Seq. Cells are colored according to ground truth cell
labels. UMAP was performed on the latent factors C; and Ca
jointly, and the embeddings of C; and Cg are separately plotted
in order to show the missing cluster clearly. (b) The latent factor
of cells in one sample dataset learned by scJMT. The cells are
colored according to different modalities. (c) The ARI scores of
scJMT, CoupleNMF and Liger (after quantile normalization)
on 12 simulated datasets.

Finally, we test our model on a real dataset, where scRNA-
seq and scATAC-seq experiments were performed on mouse
spleen (Chen et al., 2018; Jain et al., 2021). Some single
cell data integration methods based on matrix factorization
frameworks conduct post-processing steps on the learned
factorized matrices to obtain reasonably good results (Welch
et al., 2019). In the results shown on simulated data we do
not perform any post-processing but directly take the cluster
membership indicated by the factor matrices of cells. For
our results on real data, we conduct a simple post-processing

step similar to (Zhang et al., 2021) to match the latent space
better. Basically, we construct a mutual nearest neighbor
graph between cell factors C; and Cs. For every pair of
cells p and ¢, the weight between them in the graph is:

Wyq = exp (=[|C1(p) — C2(q)ll3) )
We update C; for every cell p as follows:

quneigh(p) W;DQCQ (q)

Ci(p) =
quneigh(p) qu

(&)

We visualize the cell latent factor (Fig. 4) using UMAP,
since there is no ground truth label on real dataset, we use
the reference label provided by the original data paper for
visualization. From Fig. 4, cells with the same reference
labels are well integrated into the same clusters.
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Figure 4. The latent factor of cells in Mouse spleen dataset learned
by scJIMT visualized with UMAP. In the left plot, cells are colored
according to the modalities, and in the right plot, cells are colored
according to the reference cluster labels.

4. Conclusion

Integrating single-cell multi-omics data is a challenging
problem, especially when cells from different data modali-
ties are not jointly profiled. Some existing methods integrate
such data using the topological similarity between data man-
ifolds, which requires different data batches to have similar
manifold structure. However, it is common in real datasets
for different data modalities to not cover exactly the same
cell states. In this case the topologies are not matched
between modalities. Our method, scJMT, explores the
possibility of integrating data modalities where part of the
biological process is not matched between data modalities.
The tri-factorization framework also allows us to learn the
clusters of the features (genes and regions) as well as the
association between cell and feature clusters. Future work
can evaluate other unique abilities of our model such as the
inferred gene clusters and their association matrices. This
framework can also be generalized to include more matrices,
including paired scRNA-seq and scATAC-seq data.
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