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Abstract

Mutations in viruses can result in zoonosis, im-
mune escape, and changes in pathology. To con-
trol evolving pandemics, we wish to predict likely
trajectories of virus evolution. Here we predict the
probability of SARS-CoV-2 protein variants by us-
ing deep generative models to capture constraints
on broader evolution of coronavirus sequences.
We validate against lab measurements of mutant
effects on replication and molecular function (e.g.
receptor binding). We then apply our predictor to
evaluate the potential of mutational escape from
known antibodies, a strategy which can facilitate
the development of antibody therapeutics and vac-
cines to mitigate immune evasion.

1. Introduction

Viral diseases are characterized by the interplay between
immune detection and evasion, leading to rapid evolution
and changes in virulence. Viral escape mutations influence
reinfection rates and the duration of vaccine-induced immu-
nity, shaping population prevalence over time. To control
viral epidemics, we wish to predict plausible variants with
enhanced transmissibility or virulence. Methods for pre-
dicting viral mutation effects could be used to anticipate
the antigenic ramifications of viral evolution and develop
targeted vaccines and therapeutics that mitigate resulting
viral spread.

A variety of deep mutational scanning (DMS) methods
have emerged for quantifying the effects of viral protein
mutations in parallel. (Doud & Bloom, 2016; Lee et al.,
2018; Haddox et al., 2018; Starr et al., 2020; 2021; Matten-
berger et al., 2021). Each assay quantifies one of several
phenotypes including viral replication in cell culture, neu-
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tralization of viral replication by antibodies or drugs, and
cellular receptor or antibody binding. While these assays
have greatly informed our understanding of the potential im-
pacts of viral evolution, they are restricted to experimentally
tractable phenotypes. Viral replication assays are a relatively
comprehensive assay of virus function, but are limited to
culture-friendly cell lines and do not capture effects on trans-
missibility or behavior in tissues. Replication assays are
also challenging for viruses that lack efficient cell-growth
protocols. In lieu of replication assays for SARS-CoV-2,
yeast-display assays of the Spike receptor binding domain
(RBD) have been used to measure surface expression, bind-
ing to the ACE2 receptor, and binding to antibodies (Starr
et al., 2020; 2021). However, the relationship between these
biochemical phenotypes and overall viral function are un-
clear.

There is also a limit to the number of sequences assayed in a
DMS. Although DMS can often measure all possible single
mutants to a target protein, those mutations are in context of
a single background sequence and cannot always extrapolate
to the fast-changing context of circulating variants (Lee
et al., 2018). DMS can measure only a vanishingly small
fraction of the possible multi-mutation combinations.

Alternative insights into virus evolution can be inferred from
sequence databases of natural proteins. Generative models
of natural sequences can capture the evolutionary constraints
on a protein and predict mutant effects without supervision.
Natural sequence models are independent of wet-lab assays
and can aide interpretation of DMS measurements. Rather
than single phenotypes of single mutants, these models can
capture the ensemble of constraints in evolution and pre-
dict effects of multiple mutants and sequence contexts. The
state-of-art models consider interactions between mutations
and the full sequence context, outperforming models that
rely solely on sitewise conservation (Shin et al., 2021; Ries-
selman et al., 2018; Hopf et al., 2017; Frazer et al., 2020).

Here, we apply these models to predict the effects of muta-
tions to viral proteins and investigate both agreement and
contrast to experimentally-determined phenotypes. We then
predict the mutability of antibody epitopes to SARS-CoV-2
Spike protein and the likelihood of escape mutants.
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2. Methods

2.1. Multiple sequence alignments

For each viral protein, multiple sequences alignments were
constructed using jackhmmer (Eddy), an iterative profile-
HMM based search tool, against the uniref100 database
augmented with coronavirus and influenza sequences from
GISAID and HIV sequences from the Los Alamos National
Labs HIV database. We optimized search depth to maximize
sequence coverage and the effective number of sequences
included after clustering similar sequences as previously re-
ported (Hopf et al., 2017; Riesselman et al., 2018), achieving
greater numbers of effective sequences per protein length for
influenza and HIV proteins than for coxsackievirus capsid
and Spike RBD (Table 1).

2.2. Models

Observed viral protein sequences reflect evolution under
selection constraints for functional and infectious viruses.
Generative sequence models express the probability that a
sequence x would be generated by this process as p(z|6),
where the parameters 6 capture the constraints describing
functional variants. A generative model trained on observed
viral protein variants can then be used to estimate the relative
plausibility of a given mutant sequence as compared to the
wild-type by using the log-ratio of sequence likelihoods as
a heuristic.
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We compared three alignment-based probabilistic models
of sequences. The sitewise model and EVmutation are
undirected graphical models with probability

plalf) = exp(E(x) @

where F(z) is the log-potential of a given sequence and Z
normalizes over possible sequences (Hopf et al., 2017). For
the sitewise model, E(x) is additive over sites.

Egite(r) = Z hi(z;) 3)

The EVmutation model also includes terms for pairwise
combinations of sites.

Epair(x) = Z hi(x;) + Z Jij (i, x5) 4)
i i<j

The EVE (Evolutionary model of Variant Effects) model is
a Bayesian variational autoencoder (VAE), capable of cap-

Table 1. Number of effective sequences over length for selected
viral protein alignments.

SARS2 RBD
0.573

FLUH1 HIV ENV  COXSACKIEVIRUS
16.9 50.3 1.76

turing complex higher-order interactions across sequence
positions (Riesselman et al., 2018; Frazer et al., 2020).

2.3. Experimental data collection

We assembled a dataset of viral mutational scans combin-
ing those analyzed in DeepSequence with additional recent
studies (Riesselman et al., 2018). Studies of influenza, HIV,
zika, and coxsackievirus assayed viral replication, while
studies of SARS-CoV-2 Spike RBD assayed RBD expres-
sion in a yeast-display platform and RBD binding to the
ACE2 receptor.

To identify plausible viral escape mutations from antibodies,
we collected cryo-EM structures of spike RBD in complex
with antibodies and considered all residues with any atom
within 4 A of the antibody as its epitope (Piccoli et al., 2020;
Chi et al., 2020; Wang et al., 2021). We also used available
antibody-RBD DMS binding studies to compare measured
antibody escape with predicted mutant functionality (Starr
et al., 2021).

3. Results

3.1. Natural sequence models predict the effects of
mutations in viral proteins

We compare predictions from generative models of viral
sequences to mutational scans of viral surface proteins, with
assays measuring viral replication as well as specific protein
phenotypes such as cell receptor binding.

The EVE Bayesian VAE is on par with or outperforms linear
sitewise and EVmutation models (Figure 1). For influenza
hemagglutinin and HIV envelope proteins, correlation be-
tween model predictions and viral replication measurements
is similar to the correlation between independent experi-
mental replicates (Table 2). Despite the limited natural
sequence diversity available for Spike RBD (Table 1), EVE
predictions are moderately correlated with observed experi-
mental phenotypes. EVE mutation effect performance on
RBD phenotypes may improve as more diverse coronavirus
sequences and SARS-CoV-2 variants are identified and in-
corporated in training data.
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Figure 1. EVE is on par with or outperforms other models in viral
missense mutation effect prediction.

Table 2. Pearson correlations between viral replication experiment
replicates (as reported in (Doud & Bloom, 2016; Haddox et al.,
2018)) and model predictions.

EXPERIMENT  REPLICATES EVE (MuU- EVE
TATIONS) (SITES)

FLu H1 0.59-0.66 0.51 0.62

HIV ENnv 0.59-0.64 0.52 0.64

3.2. Natural sequence models capture protein sequence
constraints not measured in SARS-CoV-2 RBD
DMS

To date, DMSs of SARS-CoV-2 have focused on subunits
of the Spike protein, primarily the receptor-binding domain
(RBD). We examined disagreements between natural se-
quence model predictions and DMS experiments measuring
RBD expression and binding to the ACE2 human cellular
receptor in a yeast-display system.

A subset of RBD sites in the expression assay tolerate mu-
tations that are predicted as deleterious by EVE. (Figure
2 A-B). Several of these positions are in contact with non-
assayed domains of the spike protein, or with other spike
subunits in the trimer assembly. Possibly these sites are crit-
ical for spike protein folding and trimer assembly, but non-
essential for RBD folding and display in the yeast-display
system. When these sites are removed, EVE spearman cor-
relation with RBD expression improves (Table 3).

The RBD ACE2 binding assay and EVE predictions are not
well-correlated. This may be because EVE predicts several
mutations as deleterious that are not proximal to ACE2 (re-
ceptor binding motif (RBM)) in the bound structure (Figure
2 C-D). These mutations may be in sites that have other
roles in spike structural stability or function. When we only
consider the RBM, EVE spearman correlation with RBD
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Figure 2. EVE prediction differences from RBD yeast-display ex-
periments are biologically interpretable. A) EVE score is deleteri-
ous in contrast to expression in sites proximal to non-assayed Spike
domains B) Sites where RBD (light blue) is proximal to other spike
domains (red spheres) or other RBDs in the spike trimer (orange
spheres). PDB: 6XR8 C) EVE score is deleterious in contrast to
ACE2 binding in sites not located in the receptor binding motif
(RBM). D) Sites in the RBM (spheres) are predicted to be more
tolerant to mutation by EVE. PDB: 6M0J

Table 3. Spearman correlations between Spike RBD experiments
and EVE predictions on subsets of residues

EXPERIMENT REGION EVE
RBD EXPRESSION RBD 0.46
RBD EXPRESSION RBD W/0 SPIKE CONTACTS  0.55
RBD ACE2 BINDING RBD 0.27
RBD ACE2 BINDING RBM 0.45

ACE2 binding improves (Table 3).

As a whole, EVE’s predictive performance on viral replica-
tion experiments and our analysis of model disagreements
with RBD biochemical protein assays suggests that EVE
learns a combination of the varied constraints on viral pro-
tein function. EVE predictions may complement DMS stud-
ies that focus on biochemical protein assays by incorporat-
ing information about non-assayed constraints.

3.3. Natural sequence models can be used to predict the
mutability of antibody epitopes

Viral escape mutations that avoid immune recognition in-
fluence the likelihood of reinfection and the duration of
vaccine-induced immunity. Mutation effect predictions can
inform the design of vaccines and therapeutics to target pro-
tein regions intolerant to mutation, reducing the chances of
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Figure 3. EVE predicts the plausibility of mutations in influenza HA and SARS2 Spike. A) Comparison of two HA antibodies (top), EVE
predictions (middle), and measured antibody binding (bottom). B) Comparison of two Spike RBD antibodies (top), EVE predictions
(middle), and measured antibody binding (bottom). C) Spike structure highlighting the NTD (red), RBM (orange), core RBD (blue) and
stem helix (green) (top). EVE score distributions of mutations to residues of epitopes in different Spike domains (bottom).

successful escape. We applied EVE to evaluate the chance
of escape from known antibody epitopes in the influenza
hemagglutinin protein (HA) and the SARS-CoV-2 Spike
RBD (Figure 3A-C).

The antibody FI6v3 binds to the stalk of the HA protein,
while S139\ 1 binds to the receptor binding pocket. EVE pre-
dicts that FI6v3 mutations are more deleterious than S139\1
mutations, corresponding to results from DMS experiments
quantifying replication fitness in the presence of antibodies
- these studies found that stalk-targeted antibodies are more
resistant to escape (Doud et al., 2018).

The antibody S304 binds in the core of the RBD, while
S2H19 binds to the RBM (Piccoli et al., 2020). EVE pre-
dicts that S304 epitope mutations (average EVE score: -
7.55) are more deleterious than S2H19 epitope mutations
(average EVE score: -5.42). DMS quantifying antibody
binding in a yeast-display platform identified potential es-
cape mutations to both antibodies (Starr et al., 2021). EVE
predicts that all 41 potential escape mutants (escape fraction
> 0.5) to S304 are deleterious (EVE score < -4), while
29 of the 92 potential escape mutants to S2H19 may be
tolerated (Figure 3B, bottom). This strongly contrasts the
DMS data interpreted as suggested in (Starr et al., 2021),
which permits all 41 mutants in S304 and all 92 mutants
in S2H19. This application of EVE contextualizes RBD
antibody binding experiments with information about other
constraints on protein function that may limit emergence of
escape variants.

EVE can also be applied to regions of SARS-CoV-2 Spike
that currently lack DMS characterization. We used EVE to

predict mutation effects for antibody epitopes identified in
the N-terminal domain (NTD) and stem helix (Chi et al.,
2020; Wang et al., 2021) (Figure 3C). EVE predicts that the
NTD epitope is most tolerant to mutation, followed by the
RBM. Conversely, the stem helix and core RBD epitopes are
predicted to be less tolerant to mutation. The 2D89 antibody
to the stem helix has demonstrated cross-reactivity to five
human coronaviruses, supporting the hypothesis that this re-
gion is a useful target for universal coronavirus vaccines and
therapeutic antibodies (Wang et al., 2021). While here we
highlight one antibody per structural domain, we found con-
sistent results for 135 antibody epitopes throughout Spike.

4. Conclusion

Models of natural sequence variation learn constraints on
viral proteins from the evolutionary record, not limited to
experimentally tractable phenotypes or the number of se-
quences that can be assayed. The deep Bayesian VAE, EVE,
accurately predicts protein-level mutation effects on viral
replication, and is moderately correlated with DMSs of
SARS-CoV-2 Spike RBD expression and binding. Sites
of model disagreement with the spike RBD experiments
suggest that EVE sheds light on constraints unobserved
in DMS studies and learns a combination of the varied
constraints on viral protein function. Mutation effect pre-
dictions by natural sequence models can identify antibody
epitopes intolerant to mutation, adding information about
experimentally unobserved constraints on protein function
and extending beyond regions explored by DMSs. Such
mutation-intolerant epitopes are ideal regions to target for
strain-universal vaccination and therapeutics.
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