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Abstract
Macromolecules, such as naturally occurring and
synthetic proteins and glycans, have diverse chem-
ical structures, varying in monomer composition,
connecting bonds and topology. In addition to
the chemical diversity, macromolecules usually
have opaque structure-activity relationships, mak-
ing activity prediction and model attribution hard
tasks. Recently, we proposed macromolecule
graph representation learning, achieving state-of-
the-art results in immunogenicity classification
of glycans. Here, we extend this framework to
include attribution methods for graph neural net-
works. We evaluated the performance of 2 attribu-
tion methods over 3 model architectures, and an
attention attribution for the attention-based model,
and demonstrated it for an immunogenic glycan.
Our work has two-fold implications - (1) pro-
vides attribution-backed chemical insights at the
monomer and chemical substructure level, and (2)
informs further in silico and wet-lab experiments.

1. Introduction
Graphs are a natural representation for social networks,
molecules, and biological interactomes, amongst others
(Battaglia et al., 2018). Unsupervised and supervised learn-
ing over graph representations have enabled significant ad-
vancements, achieving state-of-the-art results across sev-
eral fields (Hamilton et al., 2017). Attribution methods
have been evaluated for a number of graph neural networks
(GNNs) (Sanchez-lengeling et al., 2020). In chemistry and
life sciences, GNNs have been used for property prediction
and design of small molecules (Yang et al., 2019; Jin et al.,
2020) and periodic crystals (Xie & Grossman, 2018).

Macromolecule is a result of monomer composition, and
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(complex) bonds connecting different monomers, similar to
atoms and bonds in small molecules. We have reported that
fingerprint-based representations worked well for macro-
molecule property prediction (Schissel et al., 2020). Re-
cently, we introduced graph representations for macro-
molecules featurized using fingerprints, which we leveraged
to obtain state-of-the-art results for supervised classification
of glycans (Mohapatra et al., 2021).

In this study, we extend our macromolecule graph represen-
tation learning framework to include attribution methods for
feature importance analysis in macromolecule property pre-
diction. We apply our tools to the study of immunogenicity
in glycans.

2. Methodology
2.1. Macromolecule graph representation

We represented the macromolecule as undirected, attributed
graph, G(V,E), where V represents vertices/nodes, and E
represents edges (Figure 1A). Each node corresponds to
a monomer, and edge to a bond. Both nodes and edges
are featurized using stereochemical extended connectiv-
ity fingerprints, capturing the inherent chemistry of the
monomer/bond molecule (Rogers & Hahn, 2010).

2.2. Graph neural networks

We used pre-trained GNNs, specifically, molecular graph
convolution networks (GraphConv) (Kearnes et al., 2016),
message passing neural networks (MPNN) (Gilmer et al.,
2017), and graph attention networks (GraphAtt) (Xiong
et al., 2020), for immunogenicity classification in glycans,
as reported in Mohapatra et al. (2021) (Figure 1B).

Briefly, these models were trained with 60:20:20
train:valid:test splits, and optimized for 1000 hyperparam-
eter iterations. Ultimately, an ensemble of 25 models per
model architecture consisting of the top 5 hyperparameter
sets retrained with 5 random weight initialization seeds,
was used to make the predictions. The model performance
metrics on the test data set have been reported in Table 1.
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Figure 1. Macromolecule graph representation enables supervised learning and attribution. A. Chemical structures of macro-
molecules are represented as text files, which are parsed into NetworkX graphs. In the graphs, nodes and edges are featurized using
extended connectivity fingerprints of monomers and bonds, respectively. The text file lists string representations (SMILES) for monomers
and bonds. B. Supervised learning over macromolecule graph representations is done for a variety of classification and regression
tasks using different model architectures. C. Graph attribution provides an insight into the decision-making process of the model, by
highlighting the relative importance of different nodes/monomers (denoted as node size) in making a specific prediction.

2.3. Attribution methods

We used integrated gradients (IGs) (Sundararajan et al.,
2017) and Input x Grad (InpGrad) (Shrikumar et al., 2017)
attribution methods for the analysis of GNNs (Figure 1C).
The notation follows Sanchez-lengeling et al. (2020).

IGs interpolate between the input graph and a baseline graph,
where all features are zero, and accumulate the gradient
values for each node.

GA = (G − G′)
∫ 1

α=0

dy (G′ + α (G − G′))
dG

dα

InpGrad is the element-wise product of the input graph and
the gradient.

GA =

(
dŷ

dG

)T
G

For the attention-based GNN, GraphAtt, in addition to
IGs and InpGrad, we evaluated attribution using attention
weights, where the node attention weights are obtained by
averaging over the attention scores of the adjacent nodes.

For each attribution method, we obtained the node weights
by multiplying the positive weights with the input fingerprint
vectors -

n =
∑
nodes

G+A G

The node weights were normalized to the maximum node

weight to obtain the normalized weights -

nnorm =
n

max(n)

Consistency of node weights, as defined in Sanchez-
lengeling et al. (2020), was used for evaluation of different
attribution methods and model architectures.

We have demonstrated the results using an immunogenic
glycan from the test data set. This glycan was correctly
classified by all 3 model architectures.

Table 1. Classification metrics for different model architectures
on held-out test data set. Abbreviations: ROC-AUC, Receiver
Operating Characteristic - Area Under Curve; BCE Loss, Binary
Cross-entropy Loss.

MODEL ROC-AUC ACCURACY BCE LOSS

GRAPHATT 0.99± 0.01 0.95± 0.01 0.13± 0.10
MPNN 0.99± 0.01 0.96± 0.01 0.14± 0.10
GRAPHCONV 0.99± 0.01 0.96± 0.01 0.13± 0.11

3. Results
3.1. Evaluation of IG and InpGrad attribution methods

The node weights calculated using IG and InpGrad have sim-
ilar trends, but varying attribution consistency, both across
attribution methods and model architectures (Figure 2).
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Figure 2. Model architectures with similar classification performance have varying attribution consistency. A. Mean node weights,
obtained using IG and InpGrad, are denoted in the scatter plot, with error bars representing the standard deviation. The mean is calculated
from the node weights of respective model architecture, across top 5 hyperparameter sets and 5 random weight initialization. The data
points are colored by the monomer, and shaped according to the attribution method. B. Visualization of IG node weights obtained using
different model architectures for an immunogenic glycan. The size of the node corresponds to the importance, and the color corresponds
to the monomer, consistent with the pattern in A.

IG node weights are relatively more consistent than InpGrad
weights, as noted from the smaller standard deviation error
bars. This observation is similar to the reports in Sanchez-
lengeling et al. (2020), and in line with IG satisfying both
sensitivity and implementation invariance axioms, unlike
other attribution methods. For a single model architecture,
the relative magnitudes and trends of node weights, obtained
from IG and InpGrad, are similar.

GraphAtt has the most consistent node weights amongst
all model architectures. The rank order of the nodes is
similar, for both IG and InpGrad weights, in GraphAtt and
MPNN. In GraphConv, the highest and lowest nodes, by
weights, are swapped, with the rest of the nodes being of
relatively similar weight, in comparison to the other 2 model
architectures.

Among the different combinations of the 2 attribution meth-
ods and 3 model architectures evaluated for the single exam-
ple, IG is a better attribution method than InputGrad, and
GraphAtt is the most invariant across different model imple-
mentations. Similar evaluations of different glycans in the
data set need to be done to firmly ascertain this attribution-
architecture choice.

3.2. Attention weights for GraphAtt models

Node attention weights obtained from GraphAtt models fol-
low a similar trend as IG and InpGrad weights (Figure 3).
However, the variation in the magnitudes of the mean values
is not as significant, and the standard deviations are rela-
tively larger, in comparison to the other attribution methods.

4. Discussion and Future Work
Graph attribution methods help in cracking open the black-
box of GNN model predictions, and provide explanations in
the absence of ground-truth understanding. In this case, we
evaluated 2 attribution methods for 3 model architectures
for an immunogenic glycan. Across multiple attribution-
architecture combinations, we observed that the 3rd node, a
GlcOAcA monomer, contributed most to the immunogenic-
ity of the glycan.

In the near future, we aim to extend our analysis of the attri-
bution methods to different glycans in the data set. Through
a combination of n-grams-like composition analysis and
attribution weights, we hope to uncover the underlying prin-
ciples of glycan immunogenicity.
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Figure 3. Visualization of attention weights. Scatter plot shows
the mean node attention weights, and error bars denote the standard
deviation. The glycan graph, with node size corresponding to
attention weight, is shown as an inset image. The color palette is
consistent with Figure 2.

5. Conclusion
As demonstrated in the study, robust application of model
training and attribution methods can help in elucidation of
fundamental design principles. For biochemical properties,
such as immunogenicity or efficacy of a drug, the ability
to determine the importance of relevant chemical substruc-
tures, monomers and bonds, will significantly improve the
understanding of the system. Moreover, such approaches
can inform further studies to probe the mechanism of action
in wet-lab analyses, and ultimately drive design of better
(biological) macromolecules.
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