
Prot-A-GAN: Automatic Protein Function Annotation using GAN-inspired
Knowledge Graph Embedding

Bishnu Sarker 1 2 Marie-Dominique Devignes 2 Guy Wolf 3 Sabeur Aridhi 2

Abstract
Proteins perform various functions in living or-
ganisms. Automatic protein function annotation
is defined as finding appropriate association be-
tween proteins and functional labels like Gene
Ontology (GO) terms. n this paper, we present
a preliminary exploration of the potential of gen-
erative adversarial networks (GAN) for protein
function annotation. The Prot-A-GAN aproach
uses GAN-like adversarial training for learning
embedding of nodes and relation in an heteroge-
nous knowledge graph. Following the terminolo-
gies of GAN, we firstly train a discriminator using
domain-adaptive negative sampling to discrimi-
nate positive and negative triples, and then, we
train a generator to guide a random walk over
the knowledge graph that identify paths between
proteins and GO annotations. We evaluate the
method by performing protein function annotation
using GO terms on human disease proteins from
UniProtKB/SwissProt. As a proof-of-concept, the
conducted experiments show promising outcome
and open up new avenue for further exploration
for protein function annotation.

1. Introduction
The recent advances in Artificial Intelligence (AI) have
proved its tremendous potential to revolutionize discov-
eries in the field of biology and health. Along with the
progress in Next Generation Sequencing (NGS) technolo-
gies, affordable genome sequencing has made it possible for
AI technologies to find use cases in genomics and health.
A plethora of sequences are already available in public

1Department of Computer Science and Engineering, Khulna
University of Engineering & Technology, Khulna, Bangladesh
2University of Lorraine, CNRS Inria LORIA, Nancy, France
3Department of Statistics and Mathematics, University of Mon-
treal, Montreal, Canada. Correspondence to: Bishnu Sarker <bish-
nukuet@gmail.com>.

The 2021 ICML Workshop on Computational Biology. Copyright
2021 by the author(s).
databases. For example, UniProt Knowledge Base1 the

largest and the most comprehensible public database for
storing protein sequences contains more than 208 million
sequences according to 2020 09 release. This large volume
of protein sequences opens up opportunities to perform anal-
yses beneficial to answering long-hold questions in biology.
On the other hand, it poses challenges due to the fact that
this huge base of data is nearly impossible to annotate by
manual effort. In practice, UniProtKB is divided into two
parts : UniProtKB/SwissProt and UniProtKB/TrEMBL. In
UniprotKB/SwissProt, the protein sequences are manually
annotated or manually reviewed. This is a tremendous job
for human annotators. It requires significant amount of time
to read publications, to find the information regarding a par-
ticular protein, to identify functional properties and finally,
to annotate it. The total process is costly as well. These are
the primary reasons of UniProtKB/SwissProt having very
slow growth over time. According to 2020 09 release, there
are roughly 564 thousands of protein sequences which are
manually reviewed.

On the contrary, in UniProtKB/TrEMBL, the protein se-
quences do not have proper annotation or possibly they have
annotation from automatic tools but, are not manually re-
viewed. When UniProtKB receives a new protein sequence,
it puts it into UniProtKB/TrEMBL with minimum process-
ing and the sequence is available online for further investi-
gation. This is one of the reasons why UniProtKB/TrEMBL
has very sharp growth over the years. According to the
release from September, 2020, there are 208 million protein
sequences in TrEMBL. However, without proper functional
annotation, the use of the protein sequences is very limited.

To enrich and exploit this immensely valuable data, it is
essential to annotate these sequences with functional prop-
erties such as Enzyme Commission (EC) numbers or Gene
Ontology (GO) terms, for example. To reduce the gap be-
tween the annotated and unannotated protein sequences, it is
essential to develop accurate automatic protein function an-
notation techniques. A number of methods exist already but
few of them consider the domain architecture or exploit the
graph representation of proteins in their biological context.

In the recent years, research in knowledge graph has found

1https://www.uniprot.org/

Prot-A-GAN

Query
Protein Annotation

Prot-A-GAN: Annotation

Generator
Training

Discriminator

Positive
Triples

Expert Rules

Negative
Triples

Generated
Triples

Classifier

Reward

Lo
ss

Prot-A-GAN: Training with GAN-inspired strategy

Knowledge Graph

+

-

Random Walker

Embeddings

Embeddings

Annotator

Embeddings

Figure 1. Schematic diagram of the proposed Prot-A-GAN frame-
work.

a new surge in the machine learning community, especially,
in the domain of representation learning. Learning repre-
sentation on knowledge graphs, also known as knowledge
graph embedding, aims a transforming entities and relations
of knowledge graph into numerical vectors by encoding its
topological properties. These numerical vectors can be used
to perform downstream predictive tasks, for example, link
prediction (Rossi et al., 2020; Bordes et al., 2013), entity
resolution (Bordes et al., 2014; Nickel et al., 2011) , and
entity classification (Nickel et al., 2012). And, thus it helps
in effective and scalable discoveries in knowledge graphs
(Mohamed et al., 2019). Generative Adversarial Network
(GAN) (Goodfellow et al., 2014) has been a big success in
computer vision in generating realistic images after training
with sufficient amount of data.

Very recently, GAN has been re-purposed in the context of
graph embedding (Wang et al., 2017; Cai & Wang, 2018;
Ding et al., 2018; Wang et al., 2019). For example, Graph-
GAN (Wang et al., 2019) is a GAN-inspired node embed-
ding technique where a GAN-like adversarial training is
performed to train 1) a discriminator which is a simple co-
sine similarity function over two nodes (vi, vj), and 2) a
generator which probabilistically selects node neighbors
from the graph, given a node, and following a breadth-first
search (BFS). One of the drawbacks of this technique is
that it builds an entire BFS tree from the graph. This can
get computationally intractable when the graph grows to be
larger.

Although knowledge graph embedding techniques have gen-
erated much interests, GAN-based knowledge graph has not
been explored in the context of automatic protein function
annotation. The problem can be seen from the perspective
of generating the annotations. In this case, given a protein,
and an edge type, we are interested to find GO terms that

are most likely to be associated with the proteins. Applying
domain knowledge, and following the work of GraphGAN
(Wang et al., 2019), the model can be trained to select the
best annotations for the query protein.

In this work, we build a knowledge graph putting the bi-
ological constraints applicable in the case of protein func-
tion annotation. We propose a automatic protein function
annotation framework using knowledge graph embedding
technique to utilize protein meta-data in function prediction.
We follow the works of GraphGAN to devise a discriminator
that takes into account negative sample produced by apply-
ing the domain-specific biomedical knowledge, and a gener-
ator to guide a target specific depth-limited random walk to
discover appropriate annotations from the knowledge graph.
We formulate automatic protein function annotation task as
a link prediction problem over a knowledge graph.

2. Prot-A-GAN framework
A knowledge graph G = {V, E ,R,A} is a kind of directed
heterogeneous graph where, V is a set of objects/entities of
different types, A denotes the set of node types., R is the
set of relation types that connect the objects in V and E is
the set of edges represented as triple of the form (s, p, o), s:
subject/head/source node, p: predicate/relation/type and o:
object/tail/destination node. The entities of the knowledge
graph are mapped to their corresponding node type with a
mapping function φ : V −→ A and a link type mapping
function ψ : E −→ R. Each entity u ∈ V belongs to an
entity type φ(u) ∈ A, and each link e ∈ E belongs to a
link type (relation) ψ(e) ∈ R. N p

s is the set of neighbors
for node s for a particular relation p. Let us also consider
that f(s, p, o) with s, o ∈ V , p ∈ R is a scoring function
that estimates the likelihood of a triple to be a positive fact.
ΘV

G and ΘR
G denotes d-dimensional embedding of nodes

and relations, respectively, for the Generator. Similarly, ΘV
D

and ΘR
D denotes d-dimensional embeddings of entity and

relation, respectively, for the Discriminator.

2.1. Model Description

In the proposed framework shown in Figure 1, we adopt a
training framework that closely follow GraphGAN. Graph-
GAN is proposed for node embedding in homogeneous
networks and is not readily applicable in the case automatic
protein function annotation from heterogeneous biomedi-
cal network. Here, we adapt the training framework for
knowledge graphs which are heterogeneous graphs, and
we design the training specifically for automatic protein
function annotation.

As depicted in Figure 1, the first component to be trained
is the Generator Model that tries to learn connectivity dis-
tribution as prob(o|s, p) for triple (s, p, o) with the help

Prot-A-GAN

of a depth-limited random walk. It starts with a random
initialization of its parameters, 1) entity embeddings ΘV

G

and 2) relation embeddings ΘR
G. For each subject entity vi,

generator performs a depth-limited random walk. It stops
as soon as it reaches an entity vj for which φ(vj) is the
type of the desired target entities. The target entity and
subject entity together with the prescribed relation r form
a generated triple (vi, r, vj). The random walk starts from
the protein, moves along the path chosen by probabilistic
relevance score computed using ΘV

G and ΘR
G, and ends up

selecting entities that are GO terms. Each random walk se-
lects one GO term. Random walk is run several times with
the same subject protein to find multiple GO annotations.

All of these generated samples are sent back to the dis-
criminator to classify, and rewards are returned back to the
generator, telling how negative the samples were. These
rewards are then used to update the generator embeddings so
that the random walk discovers more positive-likely triples.

Let us consider a set of triples made up of directly con-
nected neighbor entities, and X be the list of the scores
of the triples. The relevancy score, relevance score =
eX−max(X)∑
eX−max(X) is computed as a softmax probability over

X , and finally the relevancy score is used as probability in
random selection of the next node in the random walk.

The second component is the Discriminator Model that
tries to associate triples with a likelihood score that proba-
bilistically classifies them into positive or negative triples.
In the proposed model, we adopted translational distance
as the scoring function for discriminator. The discrimina-
tor gives high score for negative triples and low score for
positive triples. During the training the discriminator model
parameters, namely ΘV

D and ΘR
D, are updated following the

binary cross- entropy loss. The training algorithm is shown
in Algorithm 1.

Sampling negative triples for training discriminator is vital
to efficiently train a discriminator. Followings are the steps
we take to sample the negative facts from the knowledge
graph. For a particular relation type, we collect all the nodes
acting as tail in the triples. Let us call this set U . For a
particular entity s, and for the same particular relation type
as above, we find the directly connected tail nodes. Let us
call this set ts. After that, we compute the set difference
U \ ts to find the candidates for forming negative facts. For
a particular entity s and relation p, the item o ∈ ts serves
as the tail nodes when building the positive triples of the
form (s, p, o). For each candidate triple, we compute the
relevancy score and rank them based on this score. The least
relevant triples are popped up as most negative triples. The
relevancy score is computed as a softmax probability over
all the the candidate facts.

3. Experiments and results
We have designed and built a knowledge graph support-
ing protein function annotation. The construction of the
knowledge graph is explained in Section 3.1

3.1. Knowledge graph construction

We are interested in leveraging the huge amount of cu-
rated information available in UniProtKB/SwissProt for dis-
covering new knowledge by building a knowledge graph
named ”UniProtinKG”: UniprotKB in Knowledge Graph.
In UniProtinKG, nodes are heterogeneous, i.e. nodes are
from various types: proteins, domains, GOA terms, pathway
reactions, tissue, genotypes and phenotypes, and glycosy-
lation. While deciding the edge, we have hand-engineered
the different edge types to reflect the nodes and the relations
among them.

Algorithm 1 Training of Prot-A-GAN
Input: Knowledge graph G, Number of training epochs

n epochs, discriminator Interval interval dis,
Generator Interval interval gen

Output: ΘV
G, ΘR

G, ΘV
D, ΘR

D

1 Initialize the model parameters ΘV
G, ΘR

G, ΘV
D, ΘR

D for
epoch <= n epochs do

2 for d epoch <= n epochs dis do
3 if d epoch reaches interval dis then
4 facts dis← get train data for dis(G)

5 Compute the discriminator loss Update the discrim-
inator parameters ΘV

D, ΘR
D

6 for g epoch <= n epochs gen do
7 if g epoch reaches interval gen then
8 facts gen← get train data for gen(G)

9 Compute the reward for the generator using the dis-
criminator parameters ΘV

D, ΘR
D Compute the loss

for the generator Update the generator parameters
ΘV

G, ΘR
G

10 epoch← epoch+ 1

protein

InterPro

MIM ID MIM ID

Process
GOA

GlyConnect
ID

Function
GOA

Component
GOA

GOGO
GO

MIM_PhenotypeMIM_Gene

Domain

GlyConnect

ipr2go
ipr2go

ipr2go

is_a

is_a
is_a

Reactome
IDPathway

parent/child of

is_a

Figure 2. Schema of the UniProtinKG metagraph.

Prot-A-GAN

The schema of the UniProtinKG metagraph is shown in Fig-
ure 2. It shows how a protein is connected with its attributes.
When many proteins are put together following this schema,
the knowledge graph is formed from the connection to com-
mon attributes. This eventually opens up possibilities of
discovering remote links among the entities.

As a proof of concept, the knowledge graph is
built on the disease proteins from UniProtKB Disease
database accessed on September, 2020 and available at:
https : //www.uniprot.org/diseases/. We call this as
UniProtinKG-Disease graph. The UniProtinKG-Disease
KG contains |V| = 26755 , |E| = 321596, |R| = 18 and
|A| = 8.

3.2. Evaluation Protocol

Prot-A-GAN is implemented using python and tensorflow
machine learning framework following the implementation
of GraphGAN with the modifications described above for
heterogenous graph. The training is run for 30 epochs and
inside, discriminator and generator modules are run for 5
epochs. Embedding dimension is 150.

Following previous works on protein function annota-
tion, we adopted precision = |A∩P |

|P | , recall = |A∩P |
|A| ,

F1 − measure = 2×precision×recall
precision+recall for P is the set of

predicted GO terms and A is the set of ground-truth GO
terms. To proceed with evaluation, we first prepared a set
of proteins as test proteins. These test proteins are sampled
at random from UniprotKB/SwissProt Disease database.
We run the annotator for each test protein and record the
predicted GO terms. They are not included in the set of
disease proteins used for training the models. Moreover, be-
cause the final purpose of the method is to annotate proteins
from which only the sequence is known, the test proteins
will be connected to the UniProtinKG-Disease only through
their domain information (from UniProtKB). The random
walk searches for GO annotations following the guide of
the trained generator, precisely using ΘV

G and ΘR
G. The final

measure includes average precision, average recall and aver-
age F1-measure, calculated over the 799 test proteins, with
and without post-processing. To improve the recall measure,
we add a post-processing step consisting in expanding the
list of predicted GO terms with all their ancestors in GO.

3.3. Results

In Table 1, we present the average precision, average recall
and average F1 score for the 799 test proteins. For each
protein in the test-set, we run Prot-A-GAN annotator and
record the predicted GO terms.

We see that Prot-A-GAN has better precision when we run
the annotator only once. In this case, the Prot-A-GAN
executes random walks as many times as the number of

domains connecting the test protein to the UniProtInKG
network. As each domain gives a new path leading to a
GO term, the number of predicted GO terms is equal to the
number of domains or less if Prot-A-GAN fails to reach
a GO term. As we increase the number of runs, we see a
gradual decrease in the precision and a gradual increase in
the recall. This behavior is explainable from the fact that
when the number of runs increases, the number of predicted
GO terms increases. This increases the number of false
positives. Thus a reduced precision is observed. However,
the high precision for single run indicates that Prot-A-GAN
has the potential to discover high-quality annotations. At
the same time, the low recall indicates the Prot-A-GAN
can not discover all of the annotations. In the case of 10-
run, we see a high recall compared to 1-run, 2-run and
5-run as it discovers higher number of GO terms by running
for 10 times. Intuitively, the high number of GO terms
introduce high number of false positives leading to a reduced
precision.

Table 1. Automatic protein function annotation using Prot-A-GAN
framework, trained on UniProtInKG-Disease

#RUN POST-PROCESSING PRECISION RECALL F1-MAX #ANNOTATED

1 YES 0.609 0.190 0.255 746/799
NO 0.325 0.074 0.108 746/799

2 YES 0.587 0.281 0.331 764/799
NO 0.330 0.124 0.156 764/799

5 YES 0.498 0.394 0.376 765/799
NO 0.302 0.204 0.199 746/799

10 YES 0.415 0.499 0.376 765/799
NO 0.257 0.281 0.207 765/799

4. Conclusion
To the best of our knowledge, this is the first time GAN
is merged with knowledge graph to design an automatic
protein function annotator. The objective was to build a
machine learning pipeline that leverages the power of adver-
sarial learning on knowledge graph to discover functional
annotations of proteins. The proposed approach opens a
new direction in the research of automatic protein function
annotation leveraging the power of GAN and knowledge
graphs. Functional annotation using GO is relatively diffi-
cult. GO terms are arranged hierarchically in gene ontology.
Moreover, each protein is annotated with multiple GO terms
that can be distinctly placed in the ontology. Sometimes,
a single protein can have more than 30 GO terms. There-
fore, deciding on the number of annotations to generate is
a dynamic decision. Apparently, the precision seems to be
lower. However, applying post-processing approaches to
gather around the ancestor annotations improved the out-
come significantly.

Training adversarial models are very resource intensive. Ap-
plying adversarial training on knowledge graph is compu-
tationally very expensive and requires advanced hardware

Prot-A-GAN

settings. The hyper-parameters involved in the process has
huge impact on the outcome of the experiment. Finding
the right hyper-parameter configuration is very challenging
due to the large search space and resource intensive training.
Due to time and resource constraints, we could not present a
thorough analysis of the impact of hyper-parameters on the
experimental outcome. However, after few trials, we found
this setting to be promising. This is a proof-of-concept and
results are preliminary. Further experimentation is neces-
sary to justify the performance. Moreover, it is well-known
that the results of DL can be unstable,Thus, further experi-
mentation is necessary

References
Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., and

Yakhnenko, O. Translating embeddings for modeling
multi-relational data. In Advances in neural information
processing systems, pp. 2787–2795, 2013.

Bordes, A., Glorot, X., Weston, J., and Bengio, Y. A se-
mantic matching energy function for learning with multi-
relational data. Machine Learning, 94(2):233–259, 2014.

Cai, L. and Wang, W. Y. Kbgan: Adversarial learning
for knowledge graph embeddings. In Proceedings of
the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), pp.
1470–1480, 2018.

Ding, M., Tang, J., and Zhang, J. Semi-supervised learn-
ing on graphs with generative adversarial nets. In Pro-
ceedings of the 27th ACM International Conference on
Information and Knowledge Management, pp. 913–922,
2018.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. In Advances in neural
information processing systems, pp. 2672–2680, 2014.

Mohamed, S. K., Novácek, V., Vandenbussche, P.-Y., and
Muñoz, E. Loss functions in knowledge graph embedding
models. In DL4KG@ ESWC, pp. 1–10, 2019.

Nickel, M., Tresp, V., and Kriegel, H.-P. A three-way model
for collective learning on multi-relational data. In Icml,
volume 11, pp. 809–816, 2011.

Nickel, M., Tresp, V., and Kriegel, H.-P. Factorizing yago:
scalable machine learning for linked data. In Proceedings
of the 21st international conference on World Wide Web,
pp. 271–280, 2012.

Rossi, A., Firmani, D., Matinata, A., Merialdo, P., and
Barbosa, D. Knowledge graph embedding for link
prediction: A comparative analysis. arXiv preprint
arXiv:2002.00819, 2020.

Wang, H., Wang, J., Wang, J., Zhao, M., Zhang, W., Zhang,
F., Li, W., Xie, X., and Guo, M. Learning graph represen-
tation with generative adversarial nets. IEEE Transactions
on Knowledge and Data Engineering, 2019.

Wang, J., Yu, L., Zhang, W., Gong, Y., Xu, Y., Wang, B.,
Zhang, P., and Zhang, D. Irgan: A minimax game for
unifying generative and discriminative information re-
trieval models. In Proceedings of the 40th International
ACM SIGIR conference on Research and Development in
Information Retrieval, pp. 515–524, 2017.

