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Abstract
Gradients of a model’s prediction with respect
to the inputs are used in a variety of downstream
analyses for deep neural networks (DNNs). Exam-
ples include post hoc explanations with attribution
methods. In many tasks, DNNs are trained on cat-
egorical input features subject to value constraints
– a notable example is DNA sequences, where in-
put values are subject to a probabilistic simplex
constraint from the 1-hot encoded data. Here we
observe that outside of this simplex, where no
data points anchor the function during training,
the learned function can exhibit erratic behaviors.
Thus, the gradients can have arbitrary directions
away from the data simplex, which manifests as
noise in gradients. This can introduce signifi-
cant errors to downstream applications that rely
on input gradients, such as attribution maps. We
introduce a simple correction for this off-simplex-
derived noise and demonstrate its effectiveness
quantitatively and qualitatively for DNNs trained
on regulatory genomics data. We find that our
correction consistently leads to a small, but signif-
icant improvement in gradient-based attribution
scores, especially when the direction of the gradi-
ents deviates significantly from the simplex.

1. Introduction
Deep neural networks (DNNs) have been applied success-
fully to many regulatory genomics tasks, such as predicting
the binding strength between proteins and DNA (Eraslan
et al., 2019; Koo & Ploenzke, 2020). In general, two prop-
erties that are considered to be very important for DNNs
are their predictive performance and interpretability, which
is somewhat elusive but generally refers to the ability to
explain the network’s decision process. In practice, this
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is achieved by revealing simplified, human-interpretable
representations that affect model predictions. In regulatory
genomics, post hoc attribution methods are typically em-
ployed to provide importance scores for each nucleotide in
a given sequence, often revealing motif-like representations
that are important for model predictions (Shrikumar et al.,
2017; Kelley et al., 2018; Nair et al., 2020; Avsec et al.,
2021). The most popular and widely used methods often
rely on gradients of the predictions with respect to the inputs,
such as saliency maps (Simonyan et al., 2013) and integrated
gradients (Sundararajan et al., 2017); these methods provide
“importance scores” that represent the prediction sensitivity
to each input feature.

Here we show that input gradients are prone to a specific
type of noise when the input features have a geometric
constraint set by a probabilistic interpretation, such as 1-hot-
encoded DNA sequences. In such cases, all data lives on
a lower-dimensional simplex within a higher-dimensional
space; for DNA, the data lives on a 3D plane within a 4D
space. A DNN has freedom to express any function shape
off of the simplex, because no data points exist to guide the
behavior of the function. This randomness can introduce
unreliable gradient components in directions off the simplex,
which can manifest as spurious noise in the input gradients,
thereby affecting explanations from gradient-based attribu-
tion methods. We introduce a simple correction to minimize
the impact of this off-simplex-derived gradient noise and
show that in doing so, gradient-based attribution maps con-
sistently improve both quantitatively and qualitatively.

2. Gradients for data that live on a simplex
Input features to DNNs in genomic prediction tasks are
sequences represented as 1-hot encoded arrays of size L×4,
having 4 nucleotide variants at each position of a sequence
of length L (Fig. 1a). 1-hot encoded data naturally lends
itself to a probabilistic interpretation, where each position
corresponds to the probability of 4 nucleotides for DNA or
20 amino acids for proteins. While the values here represent
definite/binary values, these 1-hot representations can also
be relaxed to represent real numbers – this is a standard view
for probabilisic modeling of biological sequences (Durbin
et al., 1998), where the real numbers represent statistical
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Figure 1. a) One-hot encoded genetic sequence example. General values (x, y, z, w) can be interpreted as probabilities. b) General
geometric relation of the gradient and the simplex.

quantities like nucleotide frequencies. When the column
at each nucleotide position is described by a vector of 4
real numbers – given by x, y, z , w – the probability axiom
imposes that their sum is constrained to equal 1, that is

x+ y + z + w = 1. (1)

This restricts the data to a linear simplex (subspace) of
allowed combinations, and Eq. 1 – being an equation of
a 3D plane in a 4D space – defines this simplex. During
training, a DNN is going to learn a function that is supported
by the data that solely lives on this simplex, but it will have
freedom to express any function shape outside of this plane,
for which no training data exists. Since all data, including
held-out test data, lives on this simplex, such a DNN can still
maintain good predictions, despite its unregulated behavior
off of the simplex. Nevertheless, when a function behaves
erratic outside of the simplex, especially at points near the
simplex where data lies, this could substantially affect input
gradients. Thus, we hypothesize that off-simplex gradients
introduce noise to attribution maps and other downstream
applications that rely on input gradients.

The input gradients can be decomposed into two compo-
nents: the component parallel to the data simplex (Eq. 1),
which is supported by data, and the component orthogonal
to the simplex, which we suspect is unreliable as the func-
tions off the simplex are not supported by any data during
training. We propose removing the unreliable orthogonal
component from the gradient via a directional derivative,
leaving only the parallel component that is supported by
data. Without loss of generality, we now illustrate this pro-
cedure and derive the formula for this gradient correction in
the case of widely used 1-hot encoded genomic data. Given
~n = 1

2 (̂i+ ĵ+ k̂+ l̂) is a normal vector to the simplex plane
(Eq. 1) and ~G is the gradient of function f ,
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we can correct ~G by removing the unreliable orthogonal
component, according to:
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. By comparing

Eqs. 2 and 3, we see that the corrected gradient at each posi-
tion is obtained by simply subtracting the original gradient
components by the mean gradients across components µ.
Essentially, ∂f

∂x becomes ∂f
∂x − µ.

3. Experimental overview
To test whether our correction leads to more reliable attri-
bution maps, we trained a DNN on a regulatory genomics
task using synthetic data (Koo & Ploenzke, 2021), where we
have ground truth. Specifically, the synthetic data reflects
a simple billboard model of gene regulation (Slattery et al.,
2014). Briefly, positive class sequences were embedded
with 3 to 5 “core motifs” randomly selected with replace-
ment from a pool of 5 known transcription factor motifs.
Negative class sequences were generated in a similar way
but with the exception that the pool of motifs also includes
100 non-overlapping “background motifs” from JASPAR
(Mathelier et al., 2016). 20,000 sequences, each 200 nu-
cleotides long, were randomly split into training, validation,
and test sets according to 0.7, 0.1, and 0.2, respectively.

We used two different network architectures, namely CNN-
shallow and CNN-deep from (Koo & Ploenzke, 2021), each
with two variations – ReLU or exponential activations for
the first convolutional layer – resulting in 4 models in to-
tal. CNN-shallow is a network that is designed to learn
interpretable motifs in first layer filters with ReLU acti-
vations; while, CNN-deep is designed to learn distributed
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Figure 2. Interpretability performance. Improvement of similarity scores for saliency maps (a-c) and integrated gradient maps (d-f) for
different similarity metrics. Improvement is defined as a change in similarity score after and before the correction. Light green region
represents a positive improvement; light red is where the change in similarity score is worse. Scattered points represent 50 runs per each
model: CNN-shallow-relu (green), CNN-shallow-exponential (red), CNN-deep-relu (blue), and CNN-deep-exponential (black).

motif representations (Koo & Eddy, 2019). Both networks
learn robust motif representations in first layer filters when
employing exponential activations. Models were trained in
accordance with (Koo & Ploenzke, 2021).

We evaluate the efficacy of attribution maps by calculat-
ing similarity scores between the attribution maps and the
ground truth. We investigated two different gradient-based
attribution maps: saliency maps (Simonyan et al., 2013) and
integrated gradients (Sundararajan et al., 2017), and applied
several common similarity scores: cosine similarity, AU-
ROC and AUPR. Cosine similarity uses a normalized dot
product between the attribution map and the ground truth;
the more similar the two maps are, the closer their cosine
similarity is to 1. For AUROC and AUPR, we multiplied
the attribution maps with the inputs, a so-called grad-times-
input. For each sequence, we then generated a distribution
of attribution scores at positions where ground truth motifs
were embedded and a distribution of attribution scores at
other positions. We quantified the separation of these two
distributions using the AUROC and AUPR.

4. Results
By comparing the efficacy of attribution maps before and
after correction for the 4 different CNN models (Sec. 3),
we find that our gradient correction leads to a consistent
improvement in interpretability, i.e. corrected attribution
maps are consistently closer to the ground truth than the
naive implementation. Figure 2a-c shows the consistent im-
provement of saliency maps across three similarity metrics
for four different models each with 50 runs with different
random initializations (light green regions represent pos-
itive improvement; light red regions represent a negative

change in the similarity score). Figure 2d-f shows a similar
improvement for integrated gradients. Evidently, our correc-
tion leads to consistent improvement in the attribution maps
for each model.

To further support our hypothesis that noisy gradients arise
from the angles between the naive input gradients and the
simplex, we performed a statistical analysis of gradient an-
gles with respect to the data simplex. Figure 3 summarizes
our findings using CNN-shallow with exponential activa-
tions, and we obtain very similar results with other mod-
els. Figure 3a shows the probability density of gradient
angles with respect to the simplex for positions that contain
a ground truth motif; the distribution is centered around
zero and the standard deviation is around 25 degrees. Most
angles are small, therefore the trained function seems to
produce gradients that naturally align close to the simplex.
Figure 3b shows a scatter-plot of improvements vs angles
for every position where a ground truth motif was embedded
in 500 randomly chosen positive-label sequences – this was
done for each model for all 50 runs. Here, improvement is
given by the difference between the interpretability metric
after correction minus before correction. Notice that the
nucleotides that have large gradient angles with respect to
the simplex are associated with a much larger improvement
of attribution scores. The amount of correction is directly
related to the angle: for 0 angle the correction is also 0, and
this geometry results in the observed envelope where the
true improvement (with respect to the ground truth) can-
not exceed the amount of correction itself. We see that for
most nucleotides with large angles, the improvement is near
maximal (points are concentrated by the upper envelope
with positive improvements). This also highlights how this
correction only addresses off-simplex gradient noise. Addi-
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Figure 3. Analysis of gradients at different angles. (a, c) Probability density of input gradient angles for positions where ground truth
motifs are embedded (a) and other background positions (c) across 500 randomly chosen positive-label test sequences. (b) Scatter plot of
attribution score improvements based on cosine similarity (after correction minus before correction) versus the gradient angles for ground
truth positions. Red line indicates the theoretical limit for a correction, i.e. 1− cos (angle). (d) Scatter plot of saliency scores versus
gradient angles before (blue) and after (red) correction for background positions (i.e. positions without any ground truth motifs). (b,d)
Each dot represents a different nucleotide position. (e) Input gradient correction in action; from top to bottom: uncorrected saliency map,
angles, corrected saliency map and ground truth.

tionally, since most angles are small and small angles lead
to small corrections, this explains why our gradient correc-
tion method leads to a quite modest, though very consistent,
improvement in attribution maps; most gradients are already
closely aligned to the simplex.

Figure 3c shows the density of gradient angles with respect
to the simplex for positions that do not contain a ground truth
motif, i.e. background positions. Interestingly, the width
of the background distribution of angles is broader than the
distribution for ground truth positions. This suggests that
background positions are more prone to off-simplex gra-
dient noise, which creates spurious importance scores – a
common feature observed in attribution maps for genomics.
Figure 3d shows a scatter plot of the saliency score (i.e.
grad-times-input) versus the angle for all background po-
sitions before correction (blue points) and after correction
(red points) for the same sequences in Fig. 3b. Notice that
after the correction, the saliency scores of nucleotides with
large angles are greatly reduced, which we ascribe to down-
weighting gradient noise in these positions. We also observe
a large set of saliency scores near zero for which our cor-
rection method cannot address. We believe these represent
false positive motifs that arise throughout this dataset simply
by chance and so are not considered ground truth, despite ex-
actly matching a ground truth motif pattern. To demonstrate
how the gradient correction qualitatively affects attribution
plots, in 3e we show a representative sequence patch from
positive-label sequences. Uncorrected saliency maps (visu-
alized as a sequence logo (Tareen & Kinney, 2020) – which
shows positive and negative importance scores with a height
that scales with the importance of that nucleotide) for CNN-
deep-exp exhibits spurious noise throughout, especially at
the positions directly flanking the ground truth motif pat-

tern. After the correction, the spurious saliency scores in
background positions, including the positions flanking the
ground truth motifs, are driven towards zero, resulting in a
(corrected) saliency map that better reflects the ground truth.
Generally, improvements are visually discernable, thus the
improvement is significant.

5. Discussion
Here we derived a simple gradient correction for data that
live on a constrained simplex, and we demonstrate its ef-
fectiveness in gradient-based attribution methods. We find
that our correction consistently leads to improvement in
attribution scores. We emphasize that the noise removed
is only the noise associated with erratic function behavior
off-the-simplex. This correction is not a “magic bullet” that
can correct other kinds of noise – i.e. if the function learns
a noisy version of motifs for instance. The fact that the
off-the-simplex gradient angles are typically small is itself a
substantial and interesting property of the functions trained
on categorical data with constraints.

Although our gradient correction formula was explicitly
derived for the example of widely used 1-hot genomic data,
our correction method – removing the components of the
gradient orthogonal to the data simplex – is general and
thus can be applied to any data structure with well defined
geometric constraints, including protein sequences. Since
our proposed correction is simple and can be incorporated
in analysis pipelines with one line of code, we suggest
all gradient-based methods should employ it, especially
because it adds a little computational cost. Next, we plan to
extend the study of our gradient correction to in vivo data
where ground truth is not known.
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