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Abstract
TCR-epitope binding is the key mechanism for
T cell regulation. Computational prediction of
whether a given pair binds is of great interest
for various clinical applications as well as under-
standing the underlying biological mechanisms
of binding. Previously developed methods do
not account for interrelationship between amino
acids and suffer from poor out-of-sample perfor-
mance. Our model uses the multi-head self atten-
tion mechanism to capture biological contextual
information and to improve its generalization. We
show that our model outperforms other models
and we also demonstrate that the use of attention
matrices can improve out-of-sample performance
on recent SARS-CoV-2 data.

1. Introduction
The hallmark of the adaptive immune system is the T cells’
ability to distinguish foreign invaders from host cells. T
cells carry out this important task by utilizing their surface
protein complex, called the T cell receptor (TCR) to bind
to foreign peptides presented by major histocompatibility
complex (MHC) molecules (also known as HLA molecules
if the host is human) on host cell surface. The part of a
peptide that a TCR binds to is called an epitope and the
ability to computationally infer the binding affinity of TCR-
epitope is important both for understating the underlying
mechanism of the binding and for clinical applications in
immunotherapy (Mösch et al., 2019).

Recently, immunotherapy has established itself as a promis-
ing treatment option for cancer patients. Since cancer is a
disease caused by many random genetic mutations, tumor
cells produce “neoantigens”, peptides that are different from
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those produced by a patient’s healthy cells (Schumacher
et al., 2019). Assessing which TCRs will bind to the epi-
topes on these neoantigens becomes an important question
for immunotherapy treatments. Also, with the current pan-
demic of SARS-CoV-2, the value of rapid screening for
suitable candidate TCRs which may bind to foreign pep-
tides produced by pathogens has become more clear. The
ability to find candidate TCRs allows for the quick devel-
opment of adaptive treatment strategies for diseases which
threaten public health.

Immunology researchers need to determine the particular
neoantigens present in a patient’s body. Once they have
collected the patient specific neoantigens cognate TCRs
need to be found or engineered. Furthermore screening
becomes necessary to determine the immunogenicity of a
treatment. This task can be challenging, as there are over
1010 rearrangements of the VDJ genes on TCRs. Manually
testing each TCR against its required epitope becomes an
infeasible solution (Lythe et al., 2016b). A computational
solution becomes necessary for the sake of time and labor.

Known bindings between TCRs and epitopes have been
documented, however the biological reasons behind their
specificity remains unknown. TCRs can bind to multiple
epitopes while epitopes can also bind to multiple TCRs.
This makes the search space for this problem much more
difficult as a single concrete example may either be the only
binding that either member of the pair has or possibly one
of several bindings.

2. Background
Deep learning based methods have proven successful at
extracting features and patterns from a sufficiently sized
dataset and generalizing their findings to other examples.
The advent of public databases containing epitope-specific
T cell receptor (TCR) sequences, such as VDJdb (Shugay
et al., 2018) and IEDB (Vita et al., 2019) has opened a door
to computational methods for determining the immunogenic-
ity of given epitope sequences. Solutions such as NetTCR
(Jurtz et al., 2018), TCRGP (Jokinen et al., 2019), ERGO
(Springer et al., 2020), and TCRex (Gielis et al., 2019) have
been proposed. NetTCR utilizes convolutional networks



TCR-epitope binding affinity prediction using multi-head self attention model

on the interactions between TCRs and peptides presented
by the most common human allele HLA-A*02:01. ERGO
utilizes an LSTM and autoencoder model to build a uni-
fied model using the CDR3’s of TCRs. TCRGP focuses on
utilizing the TCRα and TCRβ regions to determine which
CDRs are important for epitope recognition. TCRex utilizes
a random forest model to build a series of decision trees for
each epitope.

These methods suffer severely from several major problems.
The first of which is the loss of positional and contextual
information of TCR and epitope sequences in the models.
Additionally, TCRGP and TCRex both propose to build an
epitope-specific model for each epitope to predict binding
affinity of given TCR to the epitope, making only models
with a sufficient number of known cognate TCRs applica-
ble. Most importantly, they result in poor out-of-sample
performance. In this paper, we present a new model us-
ing multi-head self attention mechanism. It helps to learn
biological contextual representation of TCR and epitope,
and explains how our model attends each amino acids for
determining the binding affinity. We compare the prediction
performance of our model with existing baseline methods.
Furthermore, we demonstrate how to use attention matrix to
improve out-of-sample performance.

3. Method
3.1. Data

Our dataset consists of TCR-epitope pairs known to bind
collected from VDJDB, McPAS, and IEDB in December
2020. The collected data was processed into a unified for-
mat and then filtered down to only contain MHC I epitopes
and TCRβ sequences. Quality control filters were applied
to the dataset resulting in 6,388 pairs sourced from VD-
JDB, 11,936 pairs from McPAS, and 169,223 pairs from
IEDB. The databases’ information did overlap with each
other a significant amount and hence duplicate pairs were
removed. After applying the aforementioned modifications,
the dataset consisted of 150,008 binding TCR-epitope pairs.
Of which 982 unique epitopes and 140,675 unique TCRs
were observed. Since TCR-epitope pairs known to not bind
are not readily available, we generated negative data using
random recombination. New unique pairs were created uti-
lizing the same epitope distribution as the positive pairs. The
final dataset consists of a 1:1 ratio of positive and negative
data for training, validation, and testing.

An additional dataset of 332 TCR-epitope binding pairs
was sourced from IEDB. This dataset contained two unique
SARS-CoV-2 epitopes which were not present in either the
training or testing set of data. The first epitope, YLQPRT-
FLL, had 304 cognate TCRs while the other epitope, RLQS-
LQTYV, had 28 cognate TCRs.

3.2. Training and Test Set Split

Epitope and TCR sequence spaces are extremely large.
Novel epitope sequences continuously rise in nature due
to new viral strains or mutations and a human body harbors
about 1010 distinct TCR clonotypes (Lythe et al., 2016a)
produced by random genetic recombination.

Therefore, it is of interest to accurately predict binding
affinities for TCRs and epitopes that have never been seen
before. In order to simulate this we designed two strategies
for splitting the data into training and testing sets of TCR
and epitope pairs. We use these strategies to evaluate our
model’s performance and ability to generalize on unseen
TCRs and epitopes.

• TCR Split: The data was split such that any TCRs
that are in the testing set are not found in the training
set. This aims to evaluate prediction performance on
out-of-sample TCRs.

• Epitope Split: The data was split such that any epi-
topes that are in the testing set are not found in the
training set. This aims to evaluate prediction perfor-
mance on out-of-sample epitopes.

A random sampling method was not used due to most TCRs
in the data being unique. A randomized split would often
produce splits similar to those of the TCR Split method.

3.3. Multihead-Attention Model

Our binding affinity prediction model consists of two en-
coders encoding TCR and epitope sequences separately and
a linear decoder determining the affinity between the two
sequences (Figure 1). The most distinctive characteristic
of our model is that the two encoders use multi-head self
attention mechanism (Vaswani et al., 2017). The multi-head
self attention mechanism selectively attends amino acids
based on how strongly amino acids in the sequence are
correlated with each other. It helps to learn biological con-
textual representation of TCR and epitope sequences whose
structure and function are determined by how amino acids
are arranged and correlated with each other.

In the training process, each TCR and epitope sequence is
fed into an initial embedding layer to obtain embeddings
with the size p and the sequence lengths pT and pE . The se-
quence embeddings T ∈ RpT×p and E ∈ RpE×p are then
fed into corresponding encoders. The attention mechanism
in the two encoders ft and fe processes TCR and epitope
sequences separately to learn a contextual representation
of each. For this, each encoder quantifies the amount of
attention by learning the strength of linear relationships of
each amino acid with all others. The new representation is
given by a linear average of input representations weighted
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Figure 1. A depiction of the TCR-epitope binding affinity predic-
tion model using the multi-head attention mechanism.

by the strength of relationship. In detail, a TCR sequence T
is fed into three linear layers returning (linear-transformed)
key (K), query (Q), and value (V) matrices as follows:

K = TWK , Q = TWQ, V = TWV

The relationship strength between i-th amino acid and the
others, denoted as wi, is determined by the scaled dot-
product of the i-th row of Q with all rows of K as follows:

wi = Softmax

(
qiK

T

√
pT

)
where qi is the i-th row of Q. The contextual representation
of i-th amino acid is then defined as a linear sum of all
amino acid vectors weighted by wi.

t∗i = wiV = wi1v1 + · · ·+wipt
vpt

,

T∗ = WV

where wi is the i-th row of W. Each element of wi can
be interpreted as an importance score of each amino acid
in the sequence for determining the new representation
of the i-th amino acid. Similarly, an epitope sequence
is processed through corresponding encoder to obtain a

Table 1. Prediction performance of TCR-epitope binding affinity
prediction models. Average and standard deviation of AUC over
the 5-fold test sets has been reported.

MODEL AUC
TCR SPLIT EPITOPE SPLIT

OUR MODEL 76.38% (± 0.14%) 53.92% (± 5.23%)
NETTCR 73.43% (± 0.57%) 54.65% (± 4.03%)
ERGO - LSTM 74.70% (± 0.24%) 51.78% (± 4.98%)

new representation matrix. Such attention mechanism is
called self-attention. We spread out cognitive load of at-
tention mechanism by concatenating and passing multiple
self-attention outputs through a single dense layer. Finally,
output of the multi-head attention layer forms expected di-
mensions of TCR and epitope representation (T∗ and E∗).

Then, the decoder fd determines binding affinity between
the outputs of which, where the two encoded sequences are
concatenated and fed into a dense layer of several linear
transformations. The output of decoder is fed into a Sig-
moid activation function to receive a binding affinity score
between 0 and 1 as follows:

Score(T,E) =
1

1 + exp(−fd(T∗,E∗))

The binding affinity score is rounded to the clos-
est integer value to receive either 0 or 1 indicat-
ing a positive or negative predicted binding respec-
tively. We optimized the model with the following
hyperparameter search space (bold indicate the choice
for our final model): embedding matrix initialization
– {Blosum45,Blosum50,Blosum62,None}, TCR and
epitope sequence padding type – {Left,Middle,Right},
dropout rate for dense layer – {30%, 50%}, the maximum
length for TCR – {10, 15,20}, the maximum length of epi-
tope – {10,15, 20}, and the dimensions of the dense layer –
{128, 256, 512,1024}. They are tuned via grid search and
learned via Adam algorithm (Kingma & Ba, 2014). The
best performing hyperparameter set was determined using 5-
fold nested cross validation. The other models were trained
and tested using their best performing hyperparameters as
reported by their corresponding literature.

4. Results
4.1. Prediction Performance

We evaluated our performance for the TCR-epitope binding
affinity prediction task on both the TCR split and epitope
split. Table 1 shows that our method significantly outper-
forms the baseline models in the TCR split. However, there
is no significant difference in the epitope split. The model
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which was trained on the TCR split data was additionally
evaluated against the previously mentioned SARS-CoV-2
dataset. The model was able to predict the binding affinities
with an individual epitope recall of 65.13% for YLQPRT-
FLL and 57.14% for RLQSLQTYV. The overall recall on
the dataset was 64.26%.

Notably, all models perform better on the task using the
TCR split compared to the same task on the epitope split.
Although most TCRs within the dataset only appear once,
they share many features with other TCRs present. It is
common for an epitope in the dataset to bind to two TCRs
which differ by only one or two changes in its amino acid
sequence. The epitope sequences do not have this same
overlap of features and motifs, most sequences in the dataset
are fairly unique and so it is difficult to extrapolate the
information they provide to another epitope. The epitope
split ensures that an epitope in the testing set has never been
seen by the model before, and so it struggles to make an
accurate prediction. The near 50% AUC on the epitope split
with high variance for all models indicates that a key feature
is still missing from existing models.

Three hyperparameters had the greatest effect on model
performance: (1) the size of the linear transformations in
the dense layer, (2) number of heads in the attention layer,
and (3) the maximum sizes of the sequences. Our atten-
tion based model benefited from having length bounds on
sequences. Reducing either the TCR or epitope sequence
size below 15 amino acids, however was very detrimental to
model performance. We also observed that initializing the
embedding with a blosum matrix often had little to no effect
compared to utilizing a random initialization. No single blo-
sum matrix consistently out-performed the others. Even in
cases where a model with a blosum matrix performed better
than a random initialization the increase in performance was
negligible.

4.2. Attention matrix

Our model, as well as the baseline models, showed limited
performance on the epitope split and out-of-sample data
(SARS-CoV-2), indicating there is still an unknown key
feature that determines binding affinity. In this section,
we illustrate that attention matrix W can help us further
improve the prediction performance using the SARS-CoV-2
epitope YLQPRTFLL as an example.

The SARS-CoV-2 epitope YLQPRTFLL and YYV-
GYLQPRTFLL, a training set epitope, both share a sub-
sequence and bind to similar TCR sequences (Figure 2).
Our idea is based on the assumption that TCRs binding to
similar epitopes would also share similar inter-relationships
between amino acids, and hence the model’s attention mech-
anisms for those TCRs would be similar. In order to validate
this assumption, we generated reference attention matrices
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(A) YLQPRTFLL and (B) YYVGYLQPRTFLL
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(A) Correctly predicted positive pairs (B) Incorrectly predicted positive pairs

Figure 3. Distribution of the distance between (A) the correctly
predicted TCRs and the FP/TP reference matrices, and (B) the
incorrectly predicted TCRs and the FN/TN reference matrices.

by averaging TCR attention matrices of (1) true positive
(TP), (2) false positive (FP), (3) true negative (TN), and (4)
false negative (FN) predictions for the training epitope YYV-
GYLQPRTFLL. We then compared Euclidean distances be-
tween each TCR attention matrix of YLQPRTFLL and the
reference attention matrices. We observed that the positively
(i.e. correctly) predicted TCR-YLQPRTFLL pairs have at-
tentions significantly closer to the true positive than the false
positive reference attention (p-value < 2.2 × 10−16 from
paired t-test). Similarly, the negatively (i.e. incorrectly)
predicted TCR-YLQPRTFLL pairs have attentions signif-
icantly closer to the false negative than the true negative
reference attention (p-value < 2.2 × 10−16 from paired t-
test). We also observed none of the distances is significantly
correlated with the model scores (correlation between 0.05–
0.23), indicating that the distance to each reference matrix
can be a distinct measure for evaluating the confidence of
model predictions.

5. Conclusion
We have developed TCR-epitope binding affinity predic-
tion model using multi-head self attention mechanism. This
mechanism helps us to learn biological contextual represen-
tation of TCR and epitope sequences by correlating amino
acids within each sequence. We showed that our model out-
perform the baseline models in the TCR split, and demon-
strated that attention matrix can be used as a confidence
score for a prediction.
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