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Abstract
The active global SARS-CoV-2 pandemic caused
more than 167 million cases and 3.4 million
deaths worldwide. As mentioned by Ye et al.
(2021), the development of completely new drugs
for such a novel disease is a challenging, time in-
tensive process and despite researchers around the
world working on this task, no effective treatments
have been developed yet. This emphasizes the im-
portance of drug repurposing, where treatments
found among existing drugs meant for different
diseases. A common approach to this is based
on knowledge graphs, that condense relationships
between entities like drugs, diseases and genes.
Graph neural networks (GNNs) can then be used
for the task at hand by predicting links in such
knowledge graphs. Expanding on state-of-the-art
GNN research, Doshi & Chepuri (2020) originally
presented the model DR-COVID. We further ex-
tend their work using additional output interpre-
tation strategies. The best aggregation strategy
derives a top-100 ranking of candidate drugs, 32
of which currently being in COVID-19-related
clinical trials. Moreover, we present an alternative
application for the model, the generation of addi-
tional candidates based on a given pre-selection
of drug candidates using collaborative filtering. In
addition, we improved the implementation of the
model by Doshi & Chepuri (2020) by significantly
shortening the inference and pre-processing time
by exploiting data-parallelism.

1. Introduction
With the novel coronavirus, a global pandemic with se-
rious socio-economic implications for most parts of our
daily lives is active (Nicola et al., 2020). The limited abil-
ity to take precautions for an unsuspected event like this
and the rapid spread make finding an effective treatment
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as necessary as difficult, since the disease-specific knowl-
edge is limited at the beginning and human lives are lost
every day. Known and approved drugs happen to be well-
studied, thus, they pose a good starting point for swift de-
velopment of treatments, and an emerging tactic in fighting
the pandemic (Shah et al., 2020). DrugBank, an extensive
database compiling information about drugs approved by
the US Food and Drug Administration as well as experi-
mental drugs, contained more than 2 300 approved drugs
and over 4 500 experimental drugs as of 2018; both with a
strong upward trend (Wishart et al., 2018). This emphasizes
the need for computer aided development of treatments.

Drug repurposing with knowledge graphs, as first described
by Ashburn & Thor (2004), is the current state-of-the-art
approach for finding possible treatments for novel diseases
among known drugs using machine learning. Applying drug
repurposing allows for a better way to maneuver through
the pandemic. It can lead to better treatments for patients
infected with one of the COVID-19 strains and a better un-
derstanding of the characteristics of the individual strains.
Today, we approach the problem of drug repurposing us-
ing machine learning, focusing on deep learning methods.
The idea of predicting unknown links between entities in
a knowledge graph is traditionally known as Collabora-
tive Filtering, as described by Sarwar et al. (2001). In
this work we expand on the concept of graph embeddings,
which map a fixed-size feature vectors to graph nodes and
relations. A state-of-the-art technique for the creation of
such embeddings based on deep neural networks (DNNs) is
TRANSE (Bordes et al., 2013).

Knowledge graph embeddings are already utilized to solve
different tasks related to drug discovery, e.g., they are used
to predict potential drug targets for diseases to reduce cost
and increase speed in the drug development process in gen-
eral (Ye et al., 2021). Regarding the specific application of
drug repurposing relying on edge prediction in a knowledge
graph of biomedical data (see Section 2), Gysi et al. (2020)
present a novel classification approach to this problem by
implementing and merging various different ideas and tech-
niques into one ensemble classifier. At its core, they deploy
a DNN with an encoder-decoder structure. The encoder
mechanism of it, which is based on the Decagon graph neu-
ral network by Zitnik et al. (2018), was initially proposed
for the prediction of side effects of concurrent drug use.
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Our Contribution. In this paper we extend the work
of Doshi & Chepuri (2020) and Kißig et al. (2021). We
offer three contributions to the deep learning and the bioin-
formatics community.

1. We improve the post prediction step of Doshi & Chep-
uri (2020) by using a clustering of similar diseases and
increasing by more than 50% the number of predicted
drugs in the top-100 that were or are in clinical trials.

2. We explore the additional application of finding drug
candidates similar to a manually pre-selected candidate
using collaborative filtering on the same model output.
We show that many drugs that are in clinical trial can be
found by detecting the drugs that are the most similar
(e.g. using cosine-distance on the embedding of the
drugs) to a given known drug (or a subset of drugs)
which is or was in clinical trials.

3. We re-implement1 the model described by Doshi &
Chepuri (2020) and improve it by allowing flexible
neighborhood capture sizes. We also improve the im-
plementation by Kißig et al. (2021) by improving train-
ing speed, inference time, readability and by reducing
pre-processing time from 30 minutes to 2 minutes by
leveraging matrix operations. We further extend the
implementation to support Self-Label-Enhancement.

2. Dataset
Our work relies on the Drug Repurposing Knowledge Graph
(DRKG) by Ioannidis et al. (2020), which compiles data
from different biomedical databases. It contains 97 238 en-
tities belonging to 13 entity types and 5 874 261 triplets
belonging to 107 edge types. We restrict ourselves to 98
edge types between 4 entity types, namely gene, compound,
anatomy and disease, which leaves us with a knowledge
graph with 69 036 entities and 4 885 854 edges. In particu-
lar, it contains drugs and substances as compound entities,
as well as different COVID-19 variants as disease entities.
The edge types include e.g. compound-treats-disease edges,
which is the kind of edge our model predicts.

One part of DRKG are the precomputed TRANSE embed-
dings trained using dgl-ke by Zheng et al. (2020). To
train our model to predict whether a given edge in some
compound-treats-disease relation exists, we have to create
suitable training data. To provide our model with both posi-
tive and negative samples for training, for each positive edge
we sample 30 non-edges in the dataset, which results in a ra-
tio similar to DR-COVID. This process tries to account for

1Our implementation of the experiments and the model can
be found here: https://drive.google.com/file/d/
1j4RF7bKquz1W1i9ZY4TX0CWd9rz6NE0l/view?usp=
sharing.

the imbalance of edges and non-edges in the ground truth.
The set of edges included in the dataset is not complete,
however, it is quite certain to be correct. Consequently, the
positive edges are given a higher weight in the loss calcu-
lation, and the higher number of negative edges (which are
not certain to be truly negative) are given a lower weight. To
prevent too much imbalance in the individual minibatches,
we use a weighted random batch sampler that over-samples
the positive samples yielding an expected ratio of 1 : 1.5 of
positive to negative samples in each batch.

3. Model Architecture
The architecture of our model is illustrated in Figure 1. It
consists of a SIGN (Frasca et al., 2020) architecture encoder,
which provides an embedding y ∈ R250 for each node. We
apply tanh to the encoder output and forward it into our
decoder. Given two nodes u, v, the decoder takes their
encodings yu, yv and assigns a score su,v ∈ [0, 1], which
measures the probability for an edge between nodes u and v
to exist. The decoder consists of two linear layers `1(u) and
`2(v) that process the encodings yu and yv via a sigmoid
function, that is, σ(yv ·`1(yu)+yu ·`2(yv)). The loss of the
model is computed using a binary cross entropy loss with
logits with weights set as described in Section 2.

Implementation. The dataset presents itself as a list of
triples, each posing source, relation-type and sink of an
edge. This is accompanied by precomputed knowledge
graph embeddings. For the preprocessing we first filter out
the edges belonging to the part of the knowledge graph we
restrict ourselves to. We then construct a graph with the
help of DGL (Wang et al., 2019). To compute the neighbor-
hood embeddings we feed into the model, we first derive an
adjacency matrix A ∈ {0, 1}n×n from the reduced graph,
from which the edges we try to predict, i.e., compound-
treats-disease edges, have been removed. We then derive
the normalized graph Laplacian Ã = D−

1
2AD−

1
2 where

Di,i is the degree of node i. Suppose X ∈ Rn×400 is the
matrix of graph embeddings for the n nodes, then the kth
neighborhood is defined as ÃkX .

4. Output Interpretation
In this section we present different strategies for interpreting
the scores that the model outputs for the application of
predicting the top-k most promising compound nodes for
a given set of disease nodes D. Note that this is important
as there are multiple COVID-19 diseases. Let n be the
total amount of compound nodes. Predicting all n · |D|
edge combinations, our model yields a matrix of scores
S ∈ R|D|×n. For each of the following strategies we first
perform a standardization of the scores per disease using
ŝdc =

sdc−µ(sd∗)
σ(sd∗)

, where d is the index of a disease in D, c

https://drive.google.com/file/d/1j4RF7bKquz1W1i9ZY4TX0CWd9rz6NE0l/view?usp=sharing
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Figure 1. The architecture of our model as described in Section 3.

being the index of the compound, µ(sd∗) and σ(sd∗) denote
the mean and standard deviation over all diseases.

Certain “mild” diseases may be affected by plenty of com-
pounds resulting in those being linked more likely. The stan-
dardization helps to achieve a better comparability across
different diseases, allowing us to identify the suited com-
pounds for every disease individually and compare those.
However, this could also give good scores to some com-
pounds in the case of diseases with no “good” scores in the
first place, potentially yielding some less useful proposals.

An aggregation strategy takes our matrix of standardized
scores (ŝdc) and derives a list of compounds from it, the
top-k of which are our result. We propose the following
aggregation strategies. For global score mean, we calculate
the means of (ŝdc) along axis 0, that is, over all diseases per
compound; then we sort the compounds by their respective
scores and select the top-k. For global score maximum, we
find the maxima of (ŝdc) along axis 0; then again we sort the
compounds and select the top-k. For union over disease
rankings, we calculate top-x compounds per disease with
x as small as possible such that we get at least k unique
compounds in the union. We then concatenate all those
top-x lists together to get a top-k compound list.

We also propose greedy max-min fairness. Inspired by
a game-theoretic approach from auction theory, where we
think of the COVID-strains as players and the compounds
as items from which we can only pick a small set, we try
to heuristically find a set of compounds that will maximize
the COVID strain whose total score is the minimum. Note
that Global Score Mean can be considered as allocating the
drugs to the COVID strains in a way that obtains the max-
imum social welfare. In contrast, in the Greedy Max Min
Fairness we allocate the candidate drugs among the COVID-
strains in a way favoring fairness over social welfare. More
precisely, we rank the drugs by iteratively selecting the drug
that benefits the disease with the lowest sum of scores over
all already selected drugs. From this ordering we then pick
the top-k drugs. Because our standardized model outputs

ŝdc can be negative, we normalize these by additively shift-
ing them into the positive numbers. This bias however does
not interfere with the resulting order because it increases
uniformly on all parts of the sum.

Furthermore, in cluster score maximum, grouping similar
disease types can be used to enhance the accuracy of our
top-k predictions. We perform such a grouping using the
k-means clustering algorithm. For each cluster, which now
represents a group of similar diseases, we use a mean reduc-
tion to calculate the score of a compound and then reduce to
the maximum across these clusters. A sensible number of
clusters to create can be chosen by performing a principal
component analysis (PCA) (Pearson, F.R.S., 1901) on the
standardized scores. Lastly, for union over cluster rank-
ings, we perform the top-x selection on clusters calculated
with the clustering method described above. This not only
allows us to use a greater x because we have fewer lists to
pick from, but also to get more consistent top picks because
of the internal averages that we apply inside each cluster.

5. Evaluation
To test our compound ranking methods, we apply each to
retrieve a top-100 list of proposed candidates. We then
compute the number of intersections with the compounds
that are part of a clinical trial related to COVID-19 according
to the U.S. National Library of Medicine (World Health
Organization, 2021). For this we use a compiled Kaggle
dataset (Pandey, 2021) containing compound names.

We implement the model using PyTorch (Paszke et al.,
2019). We train it using the AdamW optimizer (Kingma
& Ba, 2015). We use 90% of the data for training and the
rest for validation. The training is performed on Google
Colab utilizing a Nvidia Tesla T4 and it takes ∼2 minutes
to prepare the graph dataset. We train our model using 25
epochs with a starting learning rate of 10−5 and a weight
decay of 10−2. Each training epoch took us 30 seconds,
which is a significant improvement over the 610 seconds of
the implementation by Doshi & Chepuri (2020) and can be
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Aggregation strategy # hits

Single Disease (median) 20
Global Score Maximum 22
Global Score Mean 30
Greedy Max Min Fairness 23
Cluster Score Maximum with KMeans(k=8) 18
Cluster Score Maximum with KMeans(k=3) 20
Union over Disease Rankings

(DR-COVID, (Doshi & Chepuri, 2020)) 21

Union over Cluster Rankings with KMeans(k=8) 24
Union over Cluster Rankings

with KMeans(k=3) (Kißig et al., 2021) 32

Table 1. Hits of proposed candidates in actual clinical trials.

attributed to the exploitation of data parallelism we added.

We compare the top-100 results of predicting compounds
for SARS-CoV2 E of our obtained model to those predicted
utilizing the weights of (Doshi & Chepuri, 2020). While
their model’s top-100 predictions include 22 compounds
showing up in clinical trials, we only reach 15. We suspect
the hand-made adjustments to the dataset utilizing undis-
closed data sources are responsible for this discrepancy, as
this is the sole missing part in our reimplementation. Conse-
quently, we used their published weights for the evaluation
of the post classification methods presented in Section 4.

The results of the the different post classification proce-
dures can be found in Table 1. We see that our Union
over Cluster Rankings with KMeans(k=3) outperforms the
other approaches, yielding 32 hits. A PCA on the predic-
tion scores indicates that there are 3 clusters among the
COVID strains, making a choice of k = 3 sensible. In
contrast, DR-COVID’s aggregation method, Union over
Disease Rankings, reaches just 21 hits in our evaluation
process. We observe that the hits are not evenly distributed
along the rankings of the aggregation strategies, with more
hits towards the places 60 and higher, allowing to weigh up
prediction validity against the number of predictions.

6. Collaborative Filtering
Suppose we already have pre-selected some candidates for
clinical trials. Now we would like to identify similar can-
didates that could be interesting. This new application can
be approached using collaborative filtering on our model
output. We measure the similarity2 along the model’s edge
predictions per compound.

We test this application by ranking the remaining com-
pounds of our dataset by the cosine similarity to pre-selected

2To precisely define the cosine similarity between two given
drugs i, j, let ŝ∗i, ŝ∗j be their prediction scores along the disease
dimension. Then their similarity is defined as ŝ∗i · ŝ∗j .

candidates. Our pre-selections are sampled randomly from
the clinical trial dataset. In the case of one single pre-
selected candidate, for selecting the top-100 drugs ranked by
similarity to the pre-selected candidate we get a mean of 18
(min. 0, max. 32) hits. Conducting the experiment with 15
pre-selected candidates and selecting drugs corresponding
to the top-100 of a global ranking of all similarities yields
on average 18 (min. 0, max. 37) hits.

7. Conclusion and Future Work
Deep learning can help the development of drugs in the face
of a global pandemic. Rather than looking for promising
candidates by hand, one relies on graph neural networks.
These build on top of compiled knowledge graphs connect-
ing chemical compounds, diseases and individual genes
and can help with this task without actually understand-
ing the semantic meaning of individual relationship types.
Being mainly good at detecting similar nodes in a graph
makes them useful across many fields and in contexts be-
yond bioinformatics. As already shown by Ioannidis et al.
(2020), predicting candidates for COVID-19 treatments us-
ing deep learning is a promising technique. We have been
able to clarify the evaluation part of DR-COVID by Doshi
& Chepuri (2020) and proposed an aggregation technique
yielding better results. Our own implementation improves
both training speed as well as readability.

Regarding the collaborative filtering on the model output
we find that an informed pre-selection of some drug candi-
dates by an expert opens the ability of the model to derive
other possible candidates based on the similarity of the pre-
dicted treatment-features to the specific disease. This poses
an advanced strategy in comparison to just searching for
drugs similar in general. In our case we have made the
pre-selection at random. A pre-selection that deliberately
selects different types of drugs, possibly targeting different
aspects of the disease at hand, could yield a better result set.

During our experiments we restricted ourselves to the SIGN
architecture (Frasca et al., 2020) for the encoder part, since
we built on top of the work by Doshi & Chepuri (2020). The
recently introduced new GNN architecture SAGN (Sun &
Wu, 2021) proposes a Self-Label-Enhancement mechanism
that can improve model performance. We have already built
but not yet fully compared this to our other approaches.

It remains open work to measure the effects of supplying
the model with varying neighborhood sizes, which our re-
implementation specifically allows. Moreover, a thorough
analysis of the types, stages and amount of clinical trials as
well the role a drug plays for a study (e.g., main treatment,
mitigation of side effects) remains to be conducted.
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