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Abstract

Biosynthetic Gene Clusters (BGCs) encode
metabolic pathway genes that produce secondary
metabolites, compounds which are vital sources
for the production and discovery of many drugs.
State-of-the-art tools to identify BGCs face limita-
tions to accurately predict cluster boundaries and
composition.This work proposes a reinforcement
learning approach that relies on protein domains,
and integrates functional annotations curated from
experts to optimize predictions from BGC discov-
ery tools. Our approach yields an increase above
15% in gene precision and above 25% in cluster
precision of BGC predictions from state-of-the-art
tools.

1. Background
Secondary metabolites produced by fungi are an important
source of bioactive compounds. These compounds are of
particular interest in the pharmaceutical industry for the
production of various medications(Kjærbølling et al., 2019)
such as antibiotics, immunossupressants, anti-tumor, and
antifungal drugs. Biosynthetic pathways producing these
compounds are often encoded by gene clusters known as
Biosynthetic Gene Clusters (BGCs) (Keller, 2019; Kautsar
et al., 2020). BGCs generally contain minimal components
such as backbone and tailoring enzymes. They may also
contain other components such as transporters, transcription
factors, and hypothetical proteins. (Keller, 2015; 2019).

Due to the genomic diversity of fungal genomes, accu-
rately identifying BGCs in fungi remains a challenging
task(Chavali & Rhee, 2017; Kjærbølling et al., 2019). Fun-
gal BGCs can vary substantially in composition and location
even among related species (Keller, 2019; Kjærbølling et al.,
2020; Evdokias et al., 2021). Previous state-of-the-art BGC
discovery tools such as fungiSMASH (Blin et al., 2021),
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DeepBGC (Hannigan et al., 2019), and TOUCAN (Almeida
et al., 2020) often overpredict cluster boundaries, which can
make the manual curation and chemical synthesis of these
compounds more labor intensive. In this work, we propose a
reinforcement learning approach based on Pfam (El-Gebali
et al., 2019) protein domains and functional annotations to
support improving the discovery of BGC regions in fungi.

2. Methodology
A Q-learner (Watkins & Dayan, 1992) is trained on Pfam
protein domains obtained from publicly available bench-
mark BGC datasets (Almeida et al., 2019). Training is based
on the domain occurrences in publicly available benchmark
BGC datasets (details in (Almeida et al., 2019)) composed
of annotated BGC instances obtained from MIBiG (Mini-
mum Information about a Biosynthetic Gene cluster) (Kaut-
sar et al., 2020), and synthetic non-BGC instances built
from OrthoDB (Kriventseva et al., 2018) fungal orthologous
genes. The reinforcement learning agent is tested on can-
didate BGCs generated from the Aspergillus niger NRRL3
genomic sequence (https://gb.fungalgenomics.ca/
portal), obtained by extracting sequential 10,000 amino
acid sliding windows with a 30% overlap (see details
in (Almeida et al., 2020)). Candidate BGC predictions
for A. niger are obtained with three state-of-the-art tools:
fungiSMASH, DeepBGC, and TOUCAN.

A majority vote pre-processing step is performed in state-of-
the-art candidate BGC predictions before they are optimized
by the proposed reinforcement learning method. The ma-
jority vote pre-processing handles potentially duplicated
predicted regions based on a local consensus. A gene g
appearing in m candidate BGC predictions is represented
as a label vector L = l0, l1, ..., lm, where li is the predic-
tion label (0 for predicted as non-BGC, and 1 otherwise).
A majority vote score vscore is computed as the average
value of its predicted labels L, and sequential genes with
vscore ≥ 0.5 are merged. A set of 85 manually curated A.
niger BGCs (further details described in (Inglis et al., 2013))
was considered as gold standard for our evaluation.
Reinforcement learning method For the task of optimz-
ing BGC composition, a protein domain d is represented as
an occurrence vector C = c0, c1, ..., cn, for a dataset of n
training instances, in which ci holds the domain occurrence
in a given instance (ci > 0 if a BGC instance, and ci < 0
if synthetic non-BGC). A reinforcement learning agent is
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trained on the protein domain occurrence to decide on the
best fitting action within a set of actions A = keep, skip
for the set of states of a candidate BGC, represented by the
Pfam domains within each gene. The learner receives a
reward R for each action choice. Before computing rewards
per action, skeep and sskip scores are obtained for a domain
d as in:

skeep =
∑
x∈C

x

|C|
sskip = |1− skeep|

Then rewards per action Rkeep and Rskip for a domain d
are computed considering the domain score and a keepSkip
threshold as in:

Rkeep, Rskip =

{
skeep,−skeep if skeep > (sskip ∗ keepSkip)

−sskip, sskip otherwise.
A penalty is given to the agent when it decides on an action
with negative rewards R < 0. The total penalty is computed
after an episode, meaning when the agent has processed the
complete training set. Often genes composing candidate
BGCs present multiple domains. When evaluating candidate
BGCs, the optimal action for a gene g containing a set of
domains D = d0, d1, ...dn for n domains found in g is
computed by the reinforcement learning agent as in:

ga = argmax(

n∑
i=0

di(Rkeep),

n∑
i=0

di(Rskip))

Candidate BGC genes with Rskip > Rkeep receive the
action ga = skip, and be skipped. Otherwise they receive
ga = keep, and will be maintained.
Integrating functional annotations Components form-
ing BGCs play different roles in the clusters. Generally,
minimal BGC building blocks are backbone enzymes, re-
sponsible for defining the core chemical compound pro-
duced, and tailoring enzymes, capable of modifying the
core compound and create variants (Keller, 2019). Other
known components are cluster-specific transcription factors,
transporters, and hypothetical proteins (Keller, 2015).

Figure 1. Examples of functional annotation strategies

Components within the set of 85 A. niger gold standard
BGCs were manually curated with their functional anno-
tations, and Pfam protein domaisn were extracted from

gold standard genes annotated with a BGC component role.
Three strategies, as shown in Figure 1, were developed to
integrate functional annotations in the optimization of candi-
date BGCs. Genes lacking Pfam domains are handled by the
averageAction strategy, which assigns them an action
ga = keep if at least 50% of genes g in a candidate BGC G
were also assigned an action ga = keep. For the other
two strategies, neighborWeight and dryIslands,
weights w are computed for each gene g in a candidate
BGC G as follows:

w =

n∑
i=0

hi hi =

β if backbone,
λ if other annotation,
σ otherwise.

The neighborWeight strategy handles presence of anno-
tations in neighboring genes: if a k number of surrounding
neighbors of a given gene g holds a weight

∑k
i=0 wi > 1,

then the gene weight gw = 1 and the gene action ga = keep.
The dryIslands strategy handles absence of annotations
in contiguous neighboring genes: if

∑j
i=0 gw = 0 for j se-

quential genes in G, then the gene action ga = skip. For the
evaluations described in Section 3, the following parameters
were considered for the weights: β = 2, λ = 1.5, σ = 0,
and an optimization of j = [3, 4, 5] yield the most suitable
parameter as j = 3.

3. Results
The reinforcement learning agent performance was evalu-
ated in terms of gene metrics and cluster metrics, for which
precision (P), recall (R), and F-measure (F-m) were com-
puted. To compute cluster metrics, true positive matches
were considered as candidate BGCs holding at least one
match with gold standard genes. Gene metrics are com-
puted based on matches between genes in candidate BGCs
and gold standard BGCs, being true positives genes that are
identical or similar, being candidate BGC and gold standard
gene similarities obtained through local BLAST alignment
(minimum pident ≥ 20, qcov ≥ 10). An average F-m is
also computed between both gene and cluster metrics F-m.

Table 1. Distribution of A. niger BGC components in dataset
Training Test

Component non- gold non-gold
type BGCs BGCs BGCs BGCs
Backbones 17.0% 2.0% 15.9% 2.2%
Tailoring enzymes 30.5% 7.8% 9.9% 11.9%
Transcription factors 4.8% 2.1% 5.9% 4.3%
Transporters 5.6% 2.8% 7.4% 4.6%
Non-component domains 44.7% 46.93% 49.3% 58.9%
No domains 14.6% 41.15% 15.5% 23.2%
Total # genes 2833 1781 624 11239

BGC components distribution in datasets An analy-
sis was performed to understand the distribution of BGC
components associated to a role in the training and test
datasets. The components distribution is shown in Table 1,
which demonstrates that components associated to a role
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Figure 2. Comparison of A. niger gold-standard and candidate BGCs (non-BGC genes in dark blue). (A) Candidate BGCs which the agent
correctly skipped most non-BGC genes. (B) Candidate BGCs which the agent kept most non-BGC genes − likely due to ambiguous
protein domains.

are mostly concentrated in BGCs and gold standard BGCs,
as opposed to in non-BGCs and non-gold standard BGCs.
More than half of non-gold standard BGCs encode protein
domains that are not associated to any component role.
Reinforcement learning enhances BGC predictions
Candidate BGC predictions obtained with fungiSMASH,
fungiSMASH combined with CASSIS (referred to as fungiS-
MASH/C), DeepBGC, and TOUCAN were processed by
the proposed reinforcement learning approach. Prior to pro-
cessing candidate BGCs, the reinforcement learning agent
parameters were optimized, being learning rate α = 0.01,
discount-rate factor γ = 0.01, exploration-exploitation
probability ϵ = 0.01, and keepSkip = 0.5 the values yield-
ing the smallest average penalty over 500 episodes.

Table 2 shows the results obtained for candidate BGCs
outputted directly by each tool (TOUCAN, fungiSMASH,
fungiSMASH/C, DeepBGC); candidate BGCs pro-
cessed by the proposed reinforcement learning approach
(TOUCAN-Q, fungiSMASH-Q, fungiSMASH/C-Q,
DeepBGC-Q); and candidate BGCs processed by the
proposed approach combined with the functional annotation
strategies (TOUCAN-Q-all, fungiSMASH-Q-all,
fungiSMASH/C-Q-all, DeepBGC-Q-all), as
described in Section 2. Results obtained with the pro-
posed reinforcement learning approach improved gene
precision, and consequently gene F-m in candidate

BGCs from all tools, yielding a performance increase of
14%, 15.4%, 15.2%, and 18.7% for TOUCAN-Q-all,
fungiSMASH-Q-all, fungiSMASH/C-Q-all and
DeepBGC-Q-all respectively.

Table 2. Performance on A. niger candidate BGCs from tools
gene metrics cluster metrics average

model P R F-m P R F-m F-m
TOUCAN 0.269 0.906 0.414 0.963 0.929 0.946 0.68
TOUCAN-Q 0.402 0.68 0.506 0.963 0.929 0.946 0.726
TOUCAN-Q-all 0.409 0.74 0.527 0.963 0.929 0.946 0.737
fungiSMASH 0.341 0.665 0.451 0.649 0.741 0.692 0.571
fungiSMASH-Q 0.521 0.516 0.519 1 0.741 0.851 0.685
fungiSMASH-Q-all 0.495 0.575 0.532 1 0.741 0.851 0.691
fungiSMASH/C 0.371 0.713 0.488 1 0.729 0.844 0.666
fungiSMASH/C-Q 0.523 0.508 0.515 1 0.729 0.844 0.680
fungiSMASH/C-Q-all 0.523 0.508 0.515 1 0.729 0.844 0.680
DeepBGC 0.351 0.481 0.406 0.732 0.612 0.667 0.536
DeepBGC-Q 0.574 0.42 0.485 1 0.612 0.759 0.622
DeepBGC-Q-all 0.538 0.46 0.496 1 0.612 0.759 0.627

Additionally, cluster metrics F-m for fungiSMASH
-Q-all and DeepBGC-Q-all also improved consider-
ably, yielding a performance increase of 15.9% and 9.2%
respectively. Average F-m for all tools was improved
with models that combined the reinforcement learning
agent and functional annotations, a performance increase
of 5.7%, 12%, 1.4%, and 9.1% for TOUCAN-Q-all,
fungiSMASH-Q-all, fungiSMASH/C-Q-all and
DeepBGC-Q-all respectively. The results indicate that
overall the reinforcement learning agent was able to opti-
mize BGC predictions without discarding regions correctly
predicted by the three BGC discovery tools, therefore ac-
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curately targeting false positive regions. The improvement
in results obtained by the agent when integrating functional
annotations suggests that these can be relevant features to
improve precision on predicted BGC regions.

Figure 2 shows examples comparing gold standard BGC
components versus the components outputted by different
models. In Figure 2-A the reinforcement learning agent im-
proved BGC composition for all tools, and correctly skipped
non-BGC genes (in dark blue). For clusters shown in Fig-
ure 2-B more non-BGC genes were mistakenly kept by the
agent, which can lead to overpredicted BGC regions. Such
mistakes can be the consequence of more complex cases, for
which candidate BGC genes present ambiguous protein do-
mains, which are present just as often in BGC and non-BGC
instances in the datasets, and are usually found immediately
close to true positive BGC components.

Since backbone enzymes are a vital BGC components, an
analysis of the presence of backbone enzymes in candidate
BGCs was performed. TOUCAN (92.9%), fungiSMASH
(70.7%), fungiSMASH/C (69.7%) and DeepBGC (69.7%)
percentages of candidate BGCs presenting a backbone en-
zyme remained the same even after applying the proposed
reinforcement learning method. This is another indication
that the agent is capable of targeting false positive regions
and maintaining relevant BGC components in candidates.

Reproducible performance in Aspergillus nidulans The
reproducibility of the proposed reinforcement learning ap-
proach was evaluated in the A. nidulans genome, consid-
ering a set of 72 gold standard BGCs (Drott et al., 2020).
Pseudo-functional annotations were generated for the A.
nidulans experiments since manually curated functional
annotations were not available. The pseudo-annotations
were assigned based on similar protein domain keyword
descriptions matching A. niger previously annotated BGC
components.

Table 3. Distribution of A. nidulans pseudo BGC components
Training Test

Pseudo non- gold non-gold
component type BGCs BGCs BGCs BGCs
Backbones 17.5% 2.13% 20% 2.45%
Tailoring enzymes 36% 3.70% 31.63% 4.5%
Transcription factors 4.83% 2.35% 5.92% 3.92%
Transporters 5.82% 3.65% 7.55% 5.2%
Non-component domains 33.15% 48.28% 35.3% 62.12%
No domains 14.6% 41.15% 12.65% 22.8%
Total # genes 2833 1781 490 10002

Table 3 shows the distribution of component pseudo-
annotations found in the A. nidulans training and gold-
standard data. Similarly to A. niger, candidate BGCs for
A. nidulans were obtained from TOUCAN, fungiSMASH,
fungiSMASH combined with CASSIS, and DeepBGC, and
the predicted candidate BGCs were also pre-processed by
the majority vote method as described in Section 2. The
results obtained by the reinforcement learning agent are

shown in Table 4. Our proposed method also improved
gene precision in A. nidulans candidate BGCs from all
tools, yielding an increase in gene precision of 13%, 15%,
16.6%, and 14.5%, and in average F-m of 5.2%, 6.4%, 3.6%,
and 8.2% for TOUCAN-Q-all, fungiSMASH-Q-all,
fungiSMASH/C-Q-all and DeepBGC-Q-all.

Table 4. Performance on A. nidulans candidate BGCs from tools
gene metrics cluster metrics average

model P R F-m P R F-m F-m
TOUCAN 0.272 0.681 0.389 1 0.685 0.813 0.601
TOUCAN-Q 0.441 0.591 0.505 1 0.681 0.810 0.657
TOUCAN-Q-all 0.402 0.646 0.495 1 0.681 0.810 0.653
fungiSMASH 0.319 0.727 0.443 0.817 0.795 0.806 0.624
fungiSMASH-Q 0.479 0.592 0.53 1 0.781 0.877 0.703
fungiSMASH-Q-all 0.469 0.605 0.529 1 0.736 0.848 0.688
fungiSMASH/C 0.318 0.762 0.449 1 0.792 0.884 0.666
fungiSMASH/C-Q 0.484 0.581 0.528 1 0.778 0.875 0.702
fungiSMASH/C-Q-all 0.484 0.581 0.528 1 0.778 0.875 0.702
DeepBGC 0.328 0.493 0.394 0.723 0.466 0.567 0.480
DeepBGC-Q 0.491 0.441 0.465 1 0.466 0.636 0.550
DeepBGC-Q-all 0.473 0.492 0.482 1 0.472 0.642 0.562

The results obtained for A. nidulans further demonstrate
that the reinforcement learning agent is able to improve
gene metrics without affecting cluster metrics, meaning that
false positive regions are again properly targeted. Generally
gene recall improved for the models relying on the pseudo-
functional annotations, but at the same time a small decrease
in gene precision was noticed. This is likely a consequence
of a slight increase in false positive components considered
due to the use of pseudo-annotations. However pseudo-
components might be a helpful alternative when manually
curated functional annotations are not available, or also in
contexts which experts prefer to favor recall over precision.

4. Conclusion
Fungal secondary metabolites are a vital source of com-
pounds that benefit human health. Identifying novel BGCs
can potentially lead to novel natural products, and support
drug discovery. The scarcity of openly available data on fun-
gal BGCs, and the genomic diversity of secondary metabo-
lite clusters in fungi turn the task of accurately defining
BGC borders highly challenging. This work proposed a
reinforcement learning approach combined with functional
annotation strategies to support optimizing fungal candi-
date BGCs obtained with three state-of-the-art tools. The
performance yielded by our proposed approach improved
in 15% and 25% cluster and gene precision of BGC candi-
dates, without affecting true positive predicted BGC regions.
Combining reinforcement learning and functional annota-
tion strategies yields the best average F-m performance in A.
niger, and improved gene recall in A. nidulans. The results
achieved in both fungal genomes evaluated are an indication
of the approach generalization power and robustness.

Data availability The source code and datasets
are publicly available at https://github.com/
bioinfoUQAM/RL-bgc-components under the MIT
software license.
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