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Abstract
Deep learning methods play an increasingly sig-
nificant role as feature extractors. Existing solu-
tions heavily rely on convolutional neural net-
works (CNNs) for global pixel-level analysis,
leaving the underlying local geometric structure
such as the interaction between cells unexplored.
The topological structure in medical images, as
proven to be closely related to tumor evolution,
can be well characterized by graphs. To obtain
a more comprehensive representation for down-
stream oncology tasks, we propose a fusion frame-
work for enhancing the global image-level repre-
sentation captured by CNNs with the geometry
of cell-level spatial information learned by graph
neural networks (GNN). The fusion layer opti-
mizes an integration between collaborative fea-
tures of global images and cell graphs. Two fusion
strategies have been developed: one with MLP
which is simple but turns out efficient through fine-
tuning, and the other with TRANSFORMER gains
a champion in fusing multiple networks. We eval-
uate our fusion strategies on histology datasets
curated from large patient cohorts of colorectal
and gastric cancers for three biomarker predic-
tion tasks. Both two models outperform plain
CNNs or GNNs, reaching a consistent AUC im-
provement of more than 5% on various network
backbones. The experimental results yield the
necessity for combining image-level morphologi-
cal features with cell spatial relations in medical
image analysis. Code is available here.
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1. Introduction
Histology provides a wealth of complex patterns and mor-
phological features for deep learning algorithms to mine.
Existing approaches routinely employ end-to-end convolu-
tional neural networks (CNNs) frameworks, by taking the
morphological and textural image features as input. Numer-
ous practices with CNNs have been made in diagnostic and
prognostic tasks, such as lesion detection, gene mutation
identification, molecular biomarker classification, and pa-
tient survival analysis from Hematoxylin and Eosin (H&E)
stained histology whole-slide images (WSIs) (Shaban et al.,
2019; Fu et al., 2020; Liao et al., 2020; Calderaro & Kather,
2021; Echle et al., 2021). Determined by the kernel in con-
volutional layers, which are initially targeted to analyze
fixed connectivity between local areas (i.e., pixel grids),
CNNs focus on extracting image-level feature representa-
tions. However, no guidance has been imposed explicitly
on CNNs to exploit the underlying topology from histology,
e.g., the cell-cell interaction and the spatial distribution of
cells, which have been clinically proven to be closely re-
lated to tumor evolution and biomarker expression (Galon
et al., 2006; Feichtenbeiner et al., 2014; Barua et al., 2018;
Noble et al., 2022). As a result, the recognition of the cell
dispersal manner and their mutual interactions are essential
for training robust and interpretable deep learning models
(Gunduz et al., 2004; Yener, 2016; Wang et al., 2021).

Mathematically, the topological structures and cell relation-
ships are formulated by graphs. By its definition, a graph
can characterize the relationship between nodes, e.g., super-
pixels in natural images, or the cells in histological images.
Following the establishment of graphs, graph neural net-
works (GNNs) were proposed to learn the geometric infor-
mation (Bronstein et al., 2017; Wu et al., 2020; Zhang et al.,
2020). While CNNs are capable of learning global image
representation, GNNs can provide machinery for the local
topological features. Both global and local features serve
as significant representation in learning the mapping of his-
tological image space to clinical meaningful biomarkers.
One strategy is to make use of the own merits of CNN and
GNN models. Some recent attempts at combining GNNs
with CNNs have achieved satisfactory performance boost in
natural image classification tasks, such as remote sensing

https://github.com/yiqings/HEGnnEnhanceCnn
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Figure 1. The overall workflow of the proposed fusion scheme for GNN and CNN in the patient-level diagnostic task. For each image
patch tessellated from WSI, a cell graph is first generated to characterize the topological structure by segmenting the nuclei region with
CA2.5-Net as graph nodes, and extracting the pre-defined pathomics feature. In the training and inference stage, the global image-level
representation and geometric representation discovered by CNN and GNN are integrated by a fusion layer to obtain a more comprehensive
feature representation. The patient-level prediction is finally determined by a majority vote from all patch predictions.

scene recognition (Liang et al., 2020; Peng et al., 2022)
and hyper-spectral image prediction (Dong et al., 2022).In
the medical imaging domain, Wei et al. (2022) predicted
isocitrate dehydrogenase gene mutation with a collaborative
learning framework that aligns a CNN for tumor MRI with
a GNN for tumor geometric shape analysis. To the best of
our knowledge, a study of the interplay between CNNs and
GNNs for histology is still absent.

In this paper, we develop an efficient strategy that is able
to integrate the structure feature from GNNs with the im-
age feature of CNNs for H&E slides analysis. The fusion
scheme partitions a WSI into non-overlapped patches and
generates a cell graph for each patch by linking associated
cells (see Section 2) to model the cell interactions. Then,
a GNN is employed to distill geometric representation. To
fuse the graph-level representation learning with image-level
embedding, we train the GNN together with the CNN in par-
allel. The integration takes place in a learnable fusion layer
which incorporates the morphology feature of the whole im-
age with the geometric representation of cell graphs. In this
way, insights into spatial structure is gained for a specific
staining image, such as the distribution of cells, interaction
of cancer and healthy cells, and tumor microenvironment.

In practice, we can simply connect a learnable fusion layer

using MLP or TRANSFORMER next to the outputs of GNN
and CNN modules. The simple amalgamation can produce
a model which outperforms a sole GNN or CNN model
on real histological image datasets (two public and one
private). The key to performance improvement of the fusion
model lies in that the local geometry of the cell graphs of
patches which can only be perceived by GNNs tops up the
global image feature of CNNs. We release the codes and
constructed graph datasets, which can serve as a benchmark
for future research in image-graph bimodal domain.

2. Integrating CNN with GNN
Method Overview. The complete pipeline of using the
proposed GNN and CNN fusion scheme for downstream
patient-level prediction is illustrated in Figure. 1. First,
we partition a WSI into disjoint patches of the same size
e.g., 224× 224 pixels in this research. Then, a cell graph is
constructed for each patch to describe the topological struc-
ture of the image, where the nodes are defined as the cells
segmented by a nuclei segmentation network, i.e., CA2.5-
Net (Huang et al., 2021). Subsequently, GNN and CNN
extract the geometric representation from the cell graph of a
patch and the global image-level presentation respectively.
Finally, the output image and graph embeddings are fused by
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a learnable layer with MLP or TRANSFORMER (Figure 2).

Cell Graph. For each patch, we can establish a cell graph.
The graph nodes (vi, with its subscript i representing the
node index) in a cell graph are biologically determined as
the nuclei regions. The cell graph can represent the cell-cell
interaction and the collection of cell graphs for all patches
provide a precise characterization of tumor microenviron-
ment. With only the availability of raw image patches, we
leverage the nuclei region segmented by a well-tuned CA2.5-
Net (Huang et al., 2021) to extract the node features of each
single nuclei node (See Appendix B). As the morpholog-
ical signals are believed relative to cell-cell interplay, the
cell-specific features X , which include the nuclei coordina-
tion, optical, textual representations, then characterize the
cell-level morphological behavior.

We then calculate the pair-wise Euclidean distance between
nuclei centroids to establish edges of a cell graph (Wang
et al., 2021) to quantify the interplay between cells in a patch.
To be precise, for arbitrary two nuclei nodes vi and vj , with
their associated centroid Cartesian coordinates (xi, yi) and
(xj , yj), the edge weight wij for the interaction between
two nodes reads

wij :=

dc/d(vi, vj), d(vi, vj) ≤ dc pixels,

0, otherwise,
(1)

where d(vi, vj) regards the Euclidean distance between vi
and vj . From the clinical observations, two cells do not exert
mutual influence with their centroid distance exceeding dc
(Barua et al., 2018). Thus, the critical distance dc depicts the
range where a cell can interact with another. Note that the
precise value of dc depends on the tissue structure, image
category, and magnification of the WSI. An edge eij exists
between vi and vj if and only if the weight wij > 0.

Geometric Feature Representation. For notation sim-
plicity, we denote the generated cell graph as G =
(V, E ,X), where graph nodes in the collection V cover
all nuclei regions, E is the set of all edges eij with the
corresponding attribute wij describes the pair-wise cell in-
teraction. The weighted edge is recorded in an adjacency
matrix A with its element Aij = wij . When a patch is ac-
quired as a cell graph G, its geometric feature representation
can be gradually learned by a graph neural network. The
ℓth layer of the GNN finds hidden representation of the cell
graph by

Hℓ
G = ReLU

(
GraphConv

(
A,Hℓ−1

) )
. (2)

The representation Hℓ
G embeds spatial topological struc-

tures of the underlying graph, which is then sent to a read-
out layer, for example, a fully-connected (FC) layer before
eventually being fed into the fusion layer. This FC layer
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Figure 2. A schematic illustration for fusing the representations of
local geometry from GNN and global image features from CNN.

helps to align the feature dimensions of the GNN with the
parallel CNN output.

Image-level Feature Representation. The image-level
feature representation is directly extracted from histology
patches by CNNs. For instance, denote {H1

I , . . . ,H
ℓ−1
I }

the output of the first ℓ− 1 blocks after convolution layers.
We can use different convolutional module for the CNN. For
example, a DENSENET (Huang et al., 2017) defines

Hℓ
I = ReLU

(
Conv(concat[H1

I , . . . ,H
ℓ−1
I ])

)
. (3)

Alternatively, RESNET (He et al., 2016) finds Hℓ
I by

Hℓ
I = ReLU

(
Conv(Hℓ−1) +Hℓ−1

)
(4)

with some activated convolutional layers conv(·). The
residual connection in the second design can reduce the
computational cost of deep CNNs and circumvent gradient
diminishing. In the empirical study, a lightweight archi-
tecture namely MOBILENETV3 (Howard et al., 2019) is
considered, where efficient depth-wise separable convolu-
tions replaces traditional convolution layers. For all CNN
blocks, we assign the input feature H0

I by staining nor-
malized histology image patches. In the same fashion as
geometric feature representation, the final image representa-
tion is fed to a learnable fully-connected layer to adjust the
embedding feature dimensions.

Learnable Feature Fusion Layer. Denote the output im-
age and graph representation for an arbitrary patch by HI
and HG . We then train the fusion layer to learn the optimal
integration between them. In particular, we consider two
candidates of MLP and TRANSFORMER (Vaswani et al.,
2017) for fusing. The former approaches fused representa-
tion Ho by

Ho = Linear(MLPBlock(...(MLPBlock(Hc)))),

where Hc = concat
[
HI ,HG

]
, and

MLPBlock(H) = Dropout(ReLU(Linear(H))).
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Table 1. Test ACC and AUC comparisons on three benchmarks. We compute the mean and standard deviation over seven random runs.

GIST-PDL1 CRC-MSI STAD-MSI

Model ACC AUC AUCpatient ACC AUC AUCpatient ACC AUC AUCpatient

GCN2 68.52±1.71 73.34±1.33 58.23±2.54 66.78±2.12 56.52±1.48 51.10±6.52 69.33±6.75 55.89±1.31 62.91±1.91

GIN2 71.94±1.37 77.18±0.81 62.86±1.43 66.61±1.79 57.01±0.91 44.60±3.39 71.33±3.52 60.31±1.22 66.75±4.09

MOBILENETV3 73.62±2.14 86.79±1.24 83.92±4.08 72.97±0.75 66.29±0.55 64.65±3.09 75.29±1.26 66.90±2.11 72.77±1.15

MOBILENETV3-GCN2-MLP 77.18±0.68 88.74±0.51 91.98±0.36 72.72±0.34 73.46±0.60 77.51±2.82 76.08±0.42 71.87±0.86 73.12±0.99

MOBILENETV3-GIN2-MLP 74.95±1.23 89.38±0.36 94.24±2.28 73.41±0.20 69.08±3.80 78.12±3.98 75.82±0.37 69.80±1.01 73.24±0.79

MOBILENETV3-GCN2-TRANS 77.89±1.17 90.47±0.86 96.74±1.02 73.16±0.44 71.04±0.76 77.81±3.70 76.31±0.41 73.63±0.70 74.32±0.64

MOBILENETV3-GIN2-TRANS 76.18±1.37 90.94±0.86 94.43±1.80 73.48±0.37 70.53±1.33 79.53±2.40 76.25±0.68 73.37±1.44 74.42±1.51

DENSENET121 71.18±1.42 82.50±3.25 89.02±4.29 74.16±0.28 69.98±0.91 66.66±4.83 74.94±1.68 65.54±1.08 74.84±0.03

DENSENET121-GCN2-MLP 76.53±0.90 88.84±0.78 95.90±3.50 75.20±0.29 70.04±1.08 68.21±2.22 76.61±0.40 74.50±0.99 75.88±1.24

DENSENET121-GIN2-MLP 76.71±0.71 88.01±0.67 94.62±1.19 74.62±0.24 70.14±0.88 71.55±1.32 77.01±0.33 74.80±1.13 75.42±0.74

DENSENET121-GCN2-TRANS 79.63±0.76 89.79±1.08 97.49±1.57 74.93±0.36 73.99±0.59 83.20±2.05 76.71±0.79 73.58±0.71 76.28±1.06

DENSENET121-GIN2-TRANS 75.82±1.51 87.70±1.09 96.01±2.00 74.82±0.54 74.62±0.63 75.69±3.17 76.84±0.58 74.36±1.00 75.82±0.95

RESNET18 70.65±2.09 82.06±1.53 86.26±1.65 73.53±0.40 65.31±3.95 61.66±4.97 73.75±1.51 72.56±0.95 74.13±0.82

RESNET18-GCN2-MLP 81.90±3.46 92.56±1.52 94.07±3.43 74.15±0.43 75.16±0.85 83.15±1.26 76.01±0.63 73.06±0.79 74.79±0.75

RESNET18-GIN2-MLP 76.26±2.02 87.58±2.48 91.31±2.57 74.52±0.70 69.85±2.19 82.99±1.67 76.18±0.42 74.69±0.89 75.62±2.17

RESNET18-GCN2-TRANS 76.04±1.78 86.40±2.68 93.66±3.64 74.79±0.32 73.64±1.28 84.70±2.11 76.10±0.80 72.66±0.45 75.56±1.23

RESNET18-GIN2-TRANS 76.81±1.08 92.05±0.57 95.53±0.94 74.61±0.47 73.43±0.77 83.78±1.65 76.17±0.41 74.56±0.24 75.84±1.71

The TRANSFORMER fusion scheme formulates Ho by

Ho = Linear(TransBlock(· · · (TransBlock(Hc)))),

where Hc = stack
[
HI ,HG

]
and TransBlock writes

for the PreNorm variant of TRANSFORMER (Wang et al.,
2019). The stack operation requires an identical dimen-
sion of HI and HG .

3. Experiments and Results
Dataset. We leverage three H&E stained histology bench-
marks, termed as CRC-MSI, STAD-MSI, and GIST-PDL1,
for evaluations. The first two datasets are constructed for
binary microsatellite instability (MSI) status classification
(Kather et al., 2019), where we follow the original train and
test split for a fair comparison. We also evaluate the perfor-
mance of the model on a binary Programmed Death-Ligand
1 (PD-L1) status binary classification dataset, which was
curated from 129 well-annotated WSIs of gastric cancer
patients. We supplement further details for data collection
and descriptions in Appendix A.

Model Configurations. We evaluate the performance gain
of our proposed fusion scheme with a comprehensive com-
parison against three CNN backbones of different scales:
MOBILENETV3, DENSENET, and RESNET. We stack two
graph convolution layers for graph representation learning.
Two candidates of graph convolution GCN (Kipf & Welling,
2017) and GIN (Xu et al., 2018) are taken into account, fol-
lowing a 2-layer TOPK (Cǎtǎlina et al., 2018) graph pooling
scheme. The graph convolution plays the critical role in
extracting the geometric feature of the patch. For the fusion
layer, both a 1-layer MLP and TRANSFORMER are validated.
We name the models in Table 1 with the adopted model ar-

chitectures and modules. For instance, RESNET18-GCN2-
MLP indicates a 18-layer RESNET for image embedding,
2-layer GCN plus TOPK for graph representation learning,
and MLP with one MLPBlock for features fusion. Details
of the model configurations and training hyper-parameters
are elaborated in Appendix E.

Results. Image-level performance is evaluated with two
metrics, namely test accuracy (ACC) and area-under-curve
(AUC). Additionally, we evaluate patient-level prediction
with AUC (AUCpatient). As shown in Table 1, the fused
learning schemes achieve more than 5% performance gain
over plain CNNs. The improvement is more significant at
the patient level at up to 23%. The additional performance
boost suggests that our design of the integrated scheme has
better potential to overcome the disturbance of heteroge-
neous patches for patient-level overall diagnosis. The main
takeaways include: 1) An individual GNN fails to achieve
satisfactory performance. But as a parallel layer, GNNs can
enhance the learning capability of CNN by a learnable fu-
sion layer. 2) MLP, though simple, serves as a good fusion
layer. 3) Generally speaking, the TRANSFORMER integrator
outperforms the simple MLP scheme. However, one can not
tell whether MLP or TRANSFORMER a universally better
fusion solution. 4) All the integrated models outperform the
plain CNNs or GNNs. 5) For the choice of a GNN module,
GCN and GIN do not present a significant advantage one
over the other. More empirical investigations are supple-
mented in Appendix F, including training cost, performance
improvement rate, as well as the performance ranking.

4. Discussion
This work proposes a fusion framework of CNN and GNN
for biomarker prediction from histology slides. On top of
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CNNs which extracts a whole-slide image feature, we in-
tegrate GNNs to add a local geometric representation for
cell-graph patches. The CNNs and GNNs are trained in
parallel and their output features are integrated in a fusion
layer. This is important as the fusion scheme addresses
the expression of the tumor microenvironment by supple-
menting topology inside local patches in network training.
We validate the framework using different combinations
of CNN, GNN and fusion modules on real H&E stained
histology datasets, which surpasses the plain CNN or GNN
methods to a significant margin.
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A. Dataset Descriptions
This section reveals detail for three benchmark datasets. We start by reviewing the two public datasets, i.e., CRC-MSI of
colorectal cancer patients and STAD-MSI of gastric adenocarcinoma cancer patients, as well as our privately curated gastric
cancer dataset GIST-PDL1. In Table 2, we brief the three datasets with numerical summary statistics.

A.1. CRC-MSI and STAD-MSI

The two public datasets focus on the prediction of distinguishing the microsatellite instability (MSI) from microsatellite
stability (MSS) in H&E stained histology. Notably, MSI is a crucial clinical indicator for oncology workflow in the
determination of whether a cancer patient responds well to immunotherapy. It is not until very recently that researches have
shown the promising performance of deep learning methods in MSI prediction. With the lack of an abundant number of
annotated histology, MSI prediction is still very challenging. Thus, it is required to incorporate prior knowledge such as
geometric representation for MSI prediction.

In the experiment, the two datasets classify images patches to either MSS (microsatellite stable) or MSIMUT (microsatellite
instable or highly mutated). We treat MSIMUT as the positive label and MSS as the negative label in computing the
AUC. The original whole-slide images (WSIs) are derived from diagnostic slides with formalin-fixed paraffin-embedded
(FFPE) processing. In particular, CRC-MSI contains H&E stained histology slides of 315 colorectal cancer patients, and
STAD-MSI includes H&E slides of 360 gastric cancer patients. For both datasets, a WSI with respect to a patient is
tessellated into non-overlapped patches/images with a resolution of 224 × 224 pixels at the magnification of 20×. The
patches from 70% patients are used for training and the remaining patches from 30% patients are left for validation. Note
that each patient is associated with only one WSI. Yet, the number of generated image patches from one WSI varies from
each other. Consequently, the ratios of training and test image samples depicted in Table 2 for CRC-MSI and STAD-MSI
are not 70% : 30% as its patient-level ratio.

A.2. GIST-PDL1

The privately collected GIST-PDL1 predicts programmed death-ligand 1 (PD-L1) status from gastric cancer histology slides.
PD-L1 is a type of immune-checkpoint protein from tumor cells that disturbs the body’s immune system through binding
programmed death 1 (PD-1) on T cells. The PD-L1 expression is one of the only established biomarkers that determine the
efficacy of immunotherapy in gastric and esophageal cancer in advanced stages (Smyth et al., 2021).

This dataset collects 129 well-annotated H&E stained histology slides of gastric cancer patients between the year 2020 to
the year 2021 from [anonymous] hospital. Each whole-slide image (WSI) corresponds to one patient, which is labeled as
either positive (CPS≥ 5) or negative (CPS< 5) determined by its PD-L1 combined positive score (CPS) tested from the
immunohistochemistry (IHC) test. The patch-level annotation inherits the associated WSI-level label. The resolution of a
WSI is around 10, 000 × 10, 000 pixels, which is split into non-overlapping images (patches) of 512 × 512 pixels at the
magnification 20×, and afterward resized to 224× 224 to get aligned with the two public datasets. Background patches are
excluded from downstream analysis. In the pre-processing, the remaining patches are subsequently stain normalized to
reduce the data heterogeneity. Each patch comprises approximately 200 cells i.e., nodes. Different from CRC-MSI and
STAD-MSI, we conduct down-sampling on the number of image patches from each WSI to balance the ration between
positive and negative samples. Consequently, we achieve a balanced image-level sample ratio that is close to 50% : 50%.

A.3. Data Availability

The two public datasets for MSI classification with their annotations freely available at

https://doi.org/10.5281/zenodo.2530834.

The private dataset is available for limited usage by contacting the authors. The extracted graphs for CRC-MSI and
STAD-MSI are available at https://github.com/yiqings/HEGnnEnhanceCnn.

B. Nuclei Segmentation
In the node construction process, we employ CA2.5-Net (Huang et al., 2021) as the backbone for nuclei segmentation, due to
its outstanding performance in challenging clustered edges segmentation tasks, which frequently occurs in histology analysis.
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Table 2. Summary of the three datasets.

Dataset GIST-PDL1 CRC-MSI STAD-MSI

IM
A

G
E

# Patients 129 315 360
# Training Images 7, 676 93, 408 100, 570
Training Positive Rate 41.10% 50.0% 50.0%
# Test Images 2, 471 99, 904 118, 008
Test Positive Rate 47.71% 29.4% 23.6%
Magnification 20× 20× 20×
Original Patch Size 512× 512 224× 224 224× 224

G
R

A
PH

Min # Nodes 50 1 1
Max # Nodes 621 103 120
Median # Nodes 199 40 51
Avg # Nodes 206 40 50
Avg # Edges 3, 402 163 246

We use the implementation at https://github.com/JH-415/CA2.5-net. Specifically, CA2.5-Net formulates
nuclei segmentation task in a multi-task learning paradigm that uses edge and cluster edge segmentation to provide extra
supervision signals. To be more concretely, the decoder in CA2.5-Net comprises three output branches that learn the nuclei
semantic segmentation, normal-edge segmentation (i.e., non-clustered edges), and clustered-edge segmentation respectively.
A proportion of the convolutional layers and upsampling layers in the CA2.5-Net is shared to learn common morphological
features. We follow the original settings (Huang et al., 2021) by using the IoU loss for the segmentation path of the nuclei
semantic (Lsem) and the smooth truncated loss for segmentation paths of normal-edges (Lnor) and clustered-edges (Lclu).
Formally, the overall loss thus takes a weighted average over the three terms of segmentation losses, i.e.,

L = α · Lsem + β · Lnor + γ · Lclu. (5)

In particular, we applies the balancing coefficients α = 0.7, β = 0.2, and γ = 0.1. We trained CA2.5-Net with ADAM
optimizer for 50 epochs, with an initial learning rate of 1 × 10−4 that decayed by 0.95 for every other epochs. At the
inference stage of nuclei locations, we adopt the nuclei segmentation path to derive the prediction result.

Three well-experienced pathologists annotated a number of 132 image patches from GIST-PDL1 for training the CA2.5-Net,
where we use 100 images for training and the remaining 32 for validation. To increase the data variations, we adopt
offline augmentation by randomly flipping and rotating for 90 degrees. Eventually, we come to a total number of 400
training samples. For illustration purposes, we pick one annotated sample and show it in Figure 3. The pixel-level instance
annotations were conducted with ‘labelme’ (https://github.com/wkentaro/labelme), where the semantic
masks can be generated directly from the instance segmentation (Huang et al., 2021).

Figure 3. An illustrative example of annotated histology patch from GIST-PDL1 for training the nuclei segmentation network. The four
subgraphs from left to right are the raw patch image, the generated semantic nuclei masks, the generated semantic nuclei edge, and the
annotated instance nuclei mask (ground truth).
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Table 3. The pre-defined node attributes computed for each nuclei area.

GLCM GLDM GLRLM
autocorrelation dependence entropy gray-level non-uniformity
cluster prominence dependence non-uniformity gray-level non-uniformity normalized
cluster shade dependence non-uniformity normalized gray-level variance
cluster tendency dependence variance high gray-level run emphasis
contrast gray-level non-uniformity long-run emphasis
correlation gray-level variance long-run high gray-level emphasis
difference average high gray-level emphasis long-run low gray-level emphasis
difference entropy large-dependence emphasis low gray-level run emphasis
difference variance large-dependence high gray-level emphasis run entropy
inverse difference large-dependence low gray-level emphasis run length non-uniformity
inverse difference moment low gray-level emphasis run length non-uniformity normalized
inverse difference moment normalized small-dependence emphasis run percentage
inverse difference normalized small-dependence high gray-level emphasis run variance
informational measure of correlation 1 small-dependence low gray-level emphasis short-run emphasis
informational measure of correlation 2 short-run high gray-level emphasis
Inverse variance short-run low gray-level emphasis
joint average FIRST-ORDER
joint energy 10 percentile
joint entropy 90 percentile GLSZM
maximal correlation coefficient energy gray-level non-uniformity
maximum probability entropy gray-level non-uniformity normalized
sum average inter quartile range gray-level variance
sum entropy kurtosis high gray-level zone emphasis
sum squares maximum large area emphasis

mean absolute deviation large area high gray-level emphasis
LOCATION mean large area low gray-level emphasis
center of mass-x median low gray-level zone emphasis
center of mass-y minimum size zone non-uniformity

range size zone non-uniformity normalized
NGTDM robust mean absolute deviation small area emphasis
busyness root mean squared small area high gray-level emphasis
coarseness skewness small area low gray-level emphasis
complexity total energy zone Entropy
contrast uniformity zone Percentage
strength variance zone variance

C. Node Feature Extraction
This section details the essential pre-processing of the raw histology input (i.e., images) to extract morphological features as
node attributes in the construction of cell graphs. The same procedure applies to all three datasets. The segmentation results
of CA2.5-Net on slide patches generate nodes of graphs. For an arbitrary patch, a graph is generated where nodes represent
cells and the weighted edges reveal the Euclidean distance between nodes.

Next, we select 94 features from pathomics, i.e., a pre-defined feature library for medical image analysis that describe the
location, first-order statistics, and the gray-level textural features of each segmented cell. To be specific, the five dimensions
of the spatial distribution include gray-level co-occurrence (GLCM), gray-level distance-zone (GLDM), gray-level run-
length (GLRLM), gray-level size-zone (GLSZM), and neighborhood gray tone difference (NGTDM). In total, there are 2
coordinates of the cell location, 18 values of the first-order statistics, 24 GLCM, 14 GLDM, 16 GLRLM, 16 GLSZM, and
5 NGTDM. We give the name of all 94 features in Table 3 for a better understanding. For a detailed calculation of each
attribute, we refer interested readers to the work by Lambin et al. (2017) .
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D. Alignment Layer
For the representation, which embeds the spatial topological structures of the underlying graph, is usually sent to a readout
layer, such as a linear layer, before eventually being fed into the fusion layer. We term this linear layer as the alignment
layer, which helps to align the feature dimensions of the GNN with the parallel CNN output.

E. Implementation Details
The code is available at:

https://github.com/yiqings/HEGnnEnhanceCnn

All the experiments are implemented in Python 3.8.12 environment on one NVIDIA ® Tesla A100 GPU device with 6,912
CUDA cores and 80GB HBM2 mounted on an HPC cluster. We implement GNNs on PyTorch-Geometric (version 2.0.3)
and CNNs on PyTorch (version 1.10.2). All CNNs used ImageNet pre-trained weights.

E.1. Training Settings

All the model architectures follow the training scheme with the hyper-parameters listed in Table 4. We employ the standard
cross-entropy as the loss function. The training stage continues until stopping improvements on the validation set after 8
consecutive epochs.

Table 4. Hyper-parameters for training the models.

Hyper-parameters Value

Initial learning rate 5× 10−4

Minimum learning rate 5× 10−6

Scheduler Cosine Annealing (T max=10)
Optimizer AdamW
Weight Decay 1× 10−5

num workers 12
Batch size 256
Maximum epoch number 100

E.2. Model Configuration

Table 5 describes the configuration of MLP fusion layer, TRANSFORMER fusion layer, GCN and GIN used in this research.
The model architectures for all three datasets apply the same configuration.

Table 5. Default configurations.

MLP

# MLPBlock 1
Feature embedding size 128
Activation Leaky ReLU
Dropout rate 0.1

TRANSFORMER

# TransBlock 1
Feature embedding size 192
Activation ReGLU
# Attention heads 4
Dropout rate in TransBlock 0.1

GCN and GIN
# layers 2
Feature embedding size 128
Activation GeLU
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E.3. Number of Trainable Parameters Comparison

Table 6 reports the number of trainable parameters of all the models we evaluated in Table 1. The values are given with the
image input size of 3× 224× 224 and the node feature dimension of 94. The scale of the trained model is jointly determined
by the choice of modules in CNN, GNN, and fusion layers, where we highlighted different options by color. The choice
of colors aligns with the associated modules visualized in Figure 2. For instance, green colors include three selections of
CNN modules, including MOBILENETV3, DENSENET, and RESNET. ‘N/A’ indicates an absence of such layers in the
framework. The numbers are reported in millions (1× 106). For instance, 13.1277 at the bottom-right of the table means it
involves 13.1277 millions of learnable parameters when training an integrated model with the RESNET18-GIN2-TRANS
architecture.

Table 6. Comparison on the number of trainable parameters (in millions).

CNN

GNN Fusion N/A MOBILENETV3 DENSENET RESNET

N/A N/A - 1.7865 7.2225 11.3110

MLP 0.0665 1.8506 7.2866 11.3751GCN TRANSFORMER - 8.4943 13.9303 13.1231

MLP 0.0712 1.8552 7.2912 11.3797GIN TRANSFORMER - 8.4989 13.9349 13.1277

F. Further Performance Analysis
Table 7 below reveals the absolute percentage improvement in the main evaluation tasks. The comparisons are made on
basis of CNN baselines. To be specific, the absolute improvement score is calculated by

∆ Score = Sfused − SCNN,

where SCNN denotes the performance score (i.e., ACC, AUC or AUCpatient) achieved by plain CNNs (i.e., MOBILENETV3,
DENSENET or RESNET), and Sfused is the associated score by the integrated models, which are listed in the first column at
the very left. For instance, the 3.56 at the top-left of the table means the test accuracy of MOBILENETV3-GCN2-MLP is
improved by 3.56% to MOBILENETV3.

Table 7. Test Acc and AUC improvements of the fusion model to pure CNN on three benchmarks.

GIST-PDL1 CRC-MSI STAD-MSI

Model ∆ACC ∆AUC ∆AUCpatient ∆ACC ∆AUC ∆AUCpatient ∆ACC ∆AUC ∆AUCpatient

MOBILENETV3-GCN2-MLP 3.56 1.96 8.06 −0.25 7.17 12.87 0.78 4.98 0.35
MOBILENETV3-GIN2-MLP 1.33 2.59 10.32 0.43 2.79 13.47 0.53 2.90 0.46
MOBILENETV3-GCN2-TRANS 4.27 3.69 12.82 0.19 4.75 13.16 1.01 6.73 1.53
MOBILENETV3-GIN2-TRANS 2.56 4.16 10.51 0.51 4.24 14.89 0.95 6.47 1.65

DENSENET121-GCN2-MLP 5.35 6.35 6.89 1.04 0.07 1.60 1.66 8.96 1.04
DENSENET121-GIN2-MLP 5.58 5.51 5.61 0.46 0.16 4.95 2.07 9.25 0.58
DENSENET121-GCN2-TRANS 8.45 7.29 8.47 0.81 4.01 16.60 1.77 8.04 1.44
DENSENET121-GIN2-TRANS 4.64 5.20 6.99 0.65 4.64 9.08 1.90 8.82 0.98

RESNET18-GCN2-MLP 11.25 10.50 7.81 0.62 9.84 21.50 2.26 0.50 0.66
RESNET18-GIN2-MLP 5.61 5.51 5.04 0.99 4.54 21.33 2.43 2.13 1.49
RESNET18-GCN2-TRANS 5.39 4.31 7.39 1.26 8.33 23.04 2.35 0.10 1.43
RESNET18-GIN2-TRANS 6.16 9.99 9.27 1.08 8.12 22.13 2.42 1.99 1.71

We also investigate the overall ranking of each model fusion configuration in Table 8. For each CNN architecture in
one dataset, ranks are calculated by sorting the reported score, where we report the averaged ranking over three datasets.
Generally speaking, the TRANSFORMER integrator outperforms the simple MLP scheme. For the choice of GNNs, GCN
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and GIN do not present a significant advantage one over another. Nevertheless, all the integrated models outperform designs
with plain CNNs.

Table 8. Performance ranking reports the average rank across three datasets. For simplicity, MV3,DENSE and RES denote MOBILENETV3,
DENSENET-121 and RESNET-18 respectively. The ‘Avg’ columns report the averaged ranking over three CNN architectures. The
‘Overall’ reports the averaged ranking over three metrics.

ACC AUC AUCpatient

MV3 DENSE RES Avg MV3 DENSE RES Avg MV3 DENSE RES Avg Overall

CNN 4.7 5.0 5.0 4.9 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
+ GCN-MLP 3.3 2.7 3.0 3.0 2.3 2.7 1.7 2.2 4.0 3.0 3.0 3.3 2.9
+ GCN-TRANS 3.3 2.3 2.3 2.7 4.0 2.3 2.7 3.0 2.7 3.7 3.3 3.2 3.0
+ GIN-MLP 1.7 2.0 2.7 2.1 1.7 2.3 3.3 2.4 2.0 1.0 2.3 1.8 2.1
+ GIN-TRANS 2.0 3.0 2.0 2.3 2.0 2.7 2.3 2.3 1.3 2.3 1.3 1.7 2.1

G. Visualization of Nuclei Segmentation and Cell Graph
To better understand the learned graphs that are generated from histology images, Figure 4-6 investigate some random patch
images from the three datasets and visualize the nuclei segmentation results and the associated graphs. In particular, the four
subgraphs from left to right of each figure display the raw patch image, the segmented cells masks, the patch image with
overlaid segmentation masks, and the generated graph.

H. Limitations and Future Works
In this research, we use GIN and GCN as the GNN backbones. Other variants such as GAT, DCNN, and GraphSAGE
have not been experimented on, which is left to future work. Additionally, node features are morphological-based, which
empirically does not perform well. Deep features by self-supervised learning are expected to be another candidate.
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Figure 4. Visualization of the segmented cells and the generated graphs from an arbitrary patch sample of GIST-PDL1. The four
subgraphs from left to right are the raw patch image, the segmented cells masks, the patch image with overlaid segmentation masks, and
the generated graph.

Figure 5. Visualization of the segmented cells and the generated graphs from an arbitrary patch sample of CRC-MSI. The four subgraphs
from left to right are the raw patch image, the segmented cells masks, the patch image with overlaid segmentation masks, and the generated
graph.

Figure 6. Visualization of the segmented cells and the generated graphs from an arbitrary patch sample of STAD-MSI. The four subgraphs
from left to right are the raw patch image, the segmented cells masks, the patch image with overlaid segmentation masks, and the generated
graph.


