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Abstract
Single-cell RNA sequencing (scRNAseq) is
rapidly advancing our understanding of cellular
composition within complex tissues and organ-
isms. A major limitation in most scRNAseq
analysis pipelines is the reliance on manual an-
notations to determine cell identities, which are
time consuming, subjective, and require expertise.
Given the surge in cell sequencing, supervised
methods–especially deep learning models–have
been developed for automatic cell type identifi-
cation (ACTI), which achieve high accuracy and
scalability. However, all existing deep learning
frameworks for ACTI lack interpretability and are
used as “black-box” models. We present N-ACT

(Neural-Attention for Cell Type identification):
the first-of-its-kind interpretable deep neural net-
work for ACTI utilizing neural attention to detect
salient genes for use in cell-types identification.
We compare N-ACT to conventional annotation
methods on two previously manually annotated
data sets, demonstrating that N-ACT accurately
identifies marker genes and cell types in an unsu-
pervised manner, while performing comparably
on multiple data sets to current state-of-the-art
model in traditional supervised ACTI.

1. Introduction
Single-cell RNA-sequencing (scRNAseq) technologies al-
low for measuring transcriptome-wide gene expression at
the single-cell level. In contrast to bulk-RNA sequencing,
scRNAseq can elucidate dynamic expression patterns be-
tween different cellular populations, providing a tremendous
advantage when studying organisms as well as delineating
intra-population heterogeneities (Erfanian et al., 2022).
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Accurate identification of cell types in scRNAseq studies
remains a challenging and time-consuming task (Pasquini
et al., 2021). Cell type annotation is often performed manu-
ally by experts – a long, laborious, and subjective process
(Pasquini et al., 2021; Clarke et al., 2021). To mitigate
these challenges, researchers have developed automatic cell
type identification (ACTI) pipelines, including deep learn-
ing (DL) models such as ACTINN (Ma & Pellegrini, 2019),
which learn from datasets that have already been annotated

from the same (or similar) populations (see (Pasquini et al.,
2021) for a review on ACTI). However, the supervision re-
quired for these approaches limits their utility for studies
which lack prior knowledge of tissue- or sample-specific
cell types. Such models can not provide the much-needed bi-
ological interpretability on the algorithm’s decision-making
needed to translate scRNAseq findings to inform experimen-
tal design.

In this work, we introduce Neural-Attention for Cell Type

identification (N-ACT): An interpretable unsupervised DL
model that employs attention to detect salient genes, and
applies this information to identify specific cell-types. Our
results on multiple datasets show that N-ACT accurately pre-
dicts preliminary annotations with no prior knowledge about
the system, providing a valuable complementary framework
to experimental studies and computational pipelines.

2. Methods and Approach
N-ACT’s framework consists of three stages (shown in Fig.
1): (I) Assigning labels (if no labels are available) and iden-
tifying highly-variable genes (HVGs), (II) a deep neural
network (NN), which is the core of N-ACT, and (III) inter-
pretation. In this section, we present stage II, i.e. N-ACT’s
DL core, and later describe stages (I) and (III) in Section 4.
N-ACT’s DL core has three modules: (1) Additive attention

module, responsible for learning the importance of each
gene; (2) Multi-headed projection module tasked with learn-
ing a set of non-linear operators mapping attention outputs
to the last layer, i.e. (3) Task module, which is designed to
fulfill a specific downstream task.
2.1. Additive Attention
Attention (or neural-attention) is a recent DL mechanism
that has transformed computer vision and natural language



Figure 1: N-ACT, an Interpretable Model for Unsupervised/Supervised Cell-Type Identification. N-ACT consists of flexible stages
and modules that can be modified for different objectives. We focus on unsupervised ACTI, which consists of the following stages: (Stage

I) Generating labels through graph-based clustering followed by identifying five thousand highly-variable genes for efficient training
(standard practice in scRNAseq pipelines), (Stage II) Training the N-ACT DL core to predict generated (or true) labels, with the goal of
identifying salient genes to predict the correct cell types (labels), and (Stage III) Interpreting model predictions by extracting attention
values, thus constructing a ranked list of “attentive genes” used to compare to existing literature (referred to as “Querying Salient Genes”
in the figure) and thus predicting cell types. We describe each component in more detail in the Appendix.

processing research (refer to (Chaudhari et al., 2021) for a
review on attention in DL). Attention networks aim to mimic
the way humans understand “context” in sentences or details
in images by focusing on a subset of significant features
for a given objective. The use of attention-based NN for
scRNAseq analysis is still in its infancy, with only a few
successful applications to date. To identify salient genes,
we use an additive attention module (Bahdanau et al., 2015)
in a feed-forward NN (similar to (Raffel & Ellis, 2015))
aiming to learn the optimal weighting (importance) of all
genes for each cell, given a downstream task.

The first step in the DL core (attention) is used to calcu-
late a gene-score matrix (weighted version of scRNAseq
count matrix), representing expression data in later layers.
These importance scores enable gene prominence quantifi-
cation for the downstream task, allowing for interpretation
of model decision making. Given a gene expression matrix
X 2 RC⇥N , where C and N denote the number of cells
and genes, respectively, we define the gene-score matrix �
and the attention weights A as shown in Eq. (1):

� = A�X,where Ai,j =
e
Li,j

PN
j=1 e

Li,j

, (1)

with L = NN(X) denoting a linear NN1. The learned
operator A is leveraged after training to identify important
(or “attentive”) genes for interpretability.

2.2. Multi-Headed Projections
Our Projection mechanisms are intermediate layers between
the attention layer and the downstream task module. The

1NN : RC⇥N ! RC⇥N is a linear operator of the form
NN(X) = XW +B, with input X and biases B 2 RC⇥N and
weights W 2 RN⇥N .

goal in using projection modules is to strike a balance be-
tween model capacity and efficiency: Too much capacity
(e.g. too many non-linear layers) could lead to significant
over-fitting, while insufficient capacity prevents the model
from learning the correct representations. We design the
projection blocks to be multi-headed (consisting of h 2 N
separate linear operators), a concept shown by (Vaswani
et al., 2017) as effective in learning different representations.
Such design allows efficient consideration of different gene
subsets and improves model performance without the need
for numerous non-linear layers. N-ACT consists of k pro-
jection blocks, each consisting of h heads. Outputs from
each head is then concatenated and inputted to a point-wise
feed-forward network (equivalent to 1⇥1 convolution layer)
with a Rectified Linear Unit (ReLU) (Nair & Hinton, 2010)
that adds non-linearity. Through careful ablation studies,
we found that k = 2 projection blocks with h = 10 heads
provides the appropriate balance of accuracy and efficiency.
Details on projection blocks and relevant ablation studies
are provided in Appendix F.
2.3. Task Module and Architecture Choices
The last stage of our DL core is the task module, which can
be adjusted based on desired objectives. Given our ACTI
goal, we chose a non-linear mapping between the projection
block’s output and the labels (either provided [supervised]
or generated in the earlier stages [unsupervised]).

Our task module connects the projections to the number of
labels, followed by Leaky ReLU activation (Xu et al., 2015)
(depicted in Appendix F). N-ACT minimizes a standard
cross entropy loss (Appendix C) using the Adam gradient-
based optimizer (Kingma & Ba, 2014) at a learning rate
↵ = 10�4 for 50 epochs. Additional information on N-
ACT’s training scheme is provided in Appendix F.



3. Datasets Studied
We tested the model’s ability to learn cell-types on four
datasets (two for supervised and two for unsupervised
ACTI). Results are presented on different datasets for each
learning setting to showcase N-ACT’s versatility and util-
ity for different systems and species (similar results were
achieved on all datasets in all tasks). Data were minimally
pre-processed (only quality-controlled) and divided roughly
85%:15% for training and testing using “balanced split”
(described in (Heydari et al., 2022)). A brief description
of each dataset is provided below, with more details on
pre-processing and the data presented in Appendix B.

Datasets for supervised training: (1) Mouse HDF
(PubMed ID: 34548614) consists of scRNAseq of murine
aortic cells of mice on a normal diet versus mice on a high-
fat diet, resulting in 24K cells and 10 annotated populations
after processing. (2) Immune CSF (PubMed ID: 33382973)
profiles single-cells from cerebrospinal fluid (CSF) of im-
mune CSF, viral encephalitis, and non-inflammatory and
autoimmune neurological disease. Cells were isolated from
31 patients, resulting in 80K cells (70K cells after process-
ing) and 15 annotated populations.

Datasets for unsupervised training: (1) COVID PBMC
(PubMed ID: 33357411) profiles the transcriptional immune
dysfunction triggered in moderate and severe COVID-19 pa-
tients using scRNAseq. Peripheral blood mononuclear cells
(PBMC) were isolated from 20 patients and were sequenced
resulting in 69K cells (64K cells after processing) with 9 cell
populations. (2) Immune cSCC (Pub Med ID: 32579974)
consists of scRNAseq from healthy skin and cutaneous squa-
mous cell carcinoma (cSCC) tumors. 10 patients with cSCC
tumors had healthy skin and tumor cells sequenced, result-
ing in 48K cells (47K cells after processing) and 14 cell
populations.

4. Results
In this section, we provide the results of using N-ACT for
datasets described in Section 3. Standard evaluation tools
were used to measure model performance with each metric
detailed in Appendix C.

4.1. Supervised ACTI Performance
We benchmark N-ACT against the current state-of-the-art
supervised model, ACTINN, though the goal of this work is
to generate unsupervised annotations. To show the impor-
tance of our novel architecture in effective attention utiliza-
tion, we added the same feed-forward attention module to
ACTINN (denoted by “ACTINN+ATTN”), which signifi-
cantly hindered the model’s performance (Table 1). Given
the comparable performance of our model to the state-of-
the-art DL algorithm, our results show that N-ACT can
effectively learn supervised ACTI. Moreover, the poor per-
formance of ACTINN + ATNN highlights the importance

Table 1: Benchmarking N-ACT on Supervised ACTI. Although
the main goal of N-ACT is interpretable ACTI in an unsupervised
manner, our model can be used in a supervised setting as well,
while still providing biological interpretability. W-F1: Weighted
F1 score, NW-F1: Non-Weighted F1 score, Interp: Interpretability

MODEL W-F1 NW-F1 INTERP?

MOUSE HDF

ACTINN 0.9703 0.9677 NO
ACTINN+ATTN 0.8759 0.7438 YES
N-ACT (OURS) 0.9681 0.9712 YES

IMMUNE CSF

ACTINN 0.9357 0.8898 NO
ACTINN+ATTN 0.7528 0.2413 YES
N-ACT (OURS) 0.9285 0.8963 YES

of appropriate architectures needed for effective use of at-
tention for interpretability. We next consider unsupervised
cell-type annotation on two previously annotated datasets.
4.2. Unsupervised ACTI Performance
Unsupervised label generation: Given that the cell types
are not known a priori, labels must be generated before
training the DL core. To do so, we choose to perform unsu-
pervised clustering using the Leiden algorithm (Traag et al.,
2019), a standard scRNAseq clustering technique in many
pipelines (Heydari & Sindi, 2022), allowing label genera-
tion without supervision. All results shown in this section
follow this approach. However, given the requisite compar-
ison against the true annotations for this work, we ensure
the number of clusters generated by our model is equal
to the number of annotated populations from the original
publication, without enforcing any additional constraints.

Finding salient genes: To identify attentive (salient) genes
in each population, we leverage the attention scores calcu-
lated by our model: First, we calculate the mean attention
score per cell type for each gene. To analyze the perfor-
mance of our model in assigning importance to various
genes, we investigate the correlation between the mean at-
tention scores for all genes in each cell type (Fig. 2(A),(C)).
We find a low correlation for those populations that are not
closely related (e.g. dendritic and endothelial cells in Fig.
2(A)), and a high correlation between those that are related
(e.g. CD4+ and CD8+ T cells in Fig. 2(C)). These results
indicate that N-ACT has accurately learned to assign impor-
tance to the same gene sets across similar populations, as
desired.

Next, we use mean attention scores per cluster and selected
the top 100 genes with the highest average values, construct-
ing an object that includes the top 100 genes for each cell
per cluster. Using this object, we calculate term frequency
(TF)-inverse document frequency (IDF) for each gene in
the object. TF-IDF is a standard natural language process-
ing technique that weights the importance of a word in a
document (see Appendix C for more information). In this



Figure 2: Evaluating N-ACT’s Unsupervised ACTI. [(A), (C)]: To evaluate the interpretability and the performance of the attentive
genes, we calculated the Pearson correlations of mean attention values in each population (per gene) for all cell types in (A) Immune
cSCC and (C) COVID PBMC. [(B), (D)]: To assess N-ACT’s predictive capabilities, we queried the TF-IDF-ranked attentive genes
from CellMeSH and recorded the placement when the predicted cell type matched the actual annotation (called a “hit”). To interpret our
model’s mistakes, we also retrieved the first prediction from CellMeSH, which we include as “Top Retrieval”.

formulation, each row of the object (containing top genes
for all cells in a cluster) is a document used to calculate
TF and IDF. The TF-IDF values for each gene were then
multiplied by the original attention values, providing the
final saliency scores. TF-IDF normalization down-weights
common housekeeping genes that frequently appear in each
cell population but are less useful in identifying cell-types.
Lastly, we re-rank genes based on these weighted scores
and select the top 25 as the attentive genes, which we use
for cell-type identification.

Identifying cell types: Once attentive genes are identified,
various techniques for finding their corresponding cell-types
can be applied. To showcase the accuracy and automation
capabilities of our model, we queried the attentive genes
using CellMeSH (Mao et al., 2021), a probabilistic cell type
querying tool that uses a database built from indexed litera-
ture to map marker genes to probable cell types (CellMeSH
details provided in Appendix D). It is important to note that
the bias in each database can affect results, and that other
specialized databases or methods can further improve the
identification process (see Appendix G). Fig. 2(B) and 2(D)
present the accuracy of cell-type prediction using N-ACT-
identified salient genes for Immune cSCC and for COVID
PBMC, respectively. These results demonstrate that N-ACT
accurately identifies attentive genes that are known markers
for the underlying populations without any prior knowledge
of the system or species.

5. Conclusions and Discussion
In this work, we presented N-ACT, the first-of-its-kind in-
terpretable DL model for ACTI. We show that N-ACT ef-
fectively identifies cell-types, in a supervised and, more
importantly, unsupervised manner. N-ACT is a first attempt
at providing interpretability in this context, and we believe

our improvements and developments reduce subjectivity
while significantly minimizing the time needed for annotat-
ing scRNAseq datasets. Optimizing the scRNAseq annota-
tion process will accelerate translational and basic research
by enabling scientists to focus on the underlying biological
questions. Our results demonstrate that N-ACT accurately
identifies salient genes that are known markers for the under-
lying populations, without prior knowledge of the system or
species. Moreover, the interpretability of our framework is
useful for predicting the correct cell-types, and for better un-
derstanding the data when there is ambiguity (e.g. Appendix
G) or when the model makes mistakes. As such, N-ACT
provides a powerful tool for facilitating discovery, even if
its top prediction is ultimately incorrect. Using our model,
cells can be assigned cell-types by new users without prior
expertise in the given system, within minutes. From these
conclusions, we hypothesize that attention can be further
utilized to identify unique relationships between different
genes and cells, which would not otherwise be apparent. De-
spite successful application of DL in scRNAseq space, most
DL models are not interpretable. Biologically-interpretable
DL models, such as N-ACT, can provide crucial informa-
tion on the algorithm’s decision making, while assisting
scientists in understanding underlying complex biological
networks.

Code and Data Accessibility
All source code and reproducibility/tutorial notebooks,
alongside download links to trained models and datasets,
are available at https://github.com/SindiLab/
NACT.

https://github.com/SindiLab/NACT
https://github.com/SindiLab/NACT
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Appendix and Supplementary Material

Appendix A. Computational Environment
Model development and testing was performed in Python (v 3.9.7) and data processing was performed in R (v. 4.1.2)
(detailed in section B). Our models were developed and tested on A100 Nvidia GPUs, and data pre-processing on a
14-inch Macbook Pro with Apple M1 Max and 64 GB RAM. Data I/O was done in Scanpy (v. 1.7.0) (Wolf et al.,
2018). The DL core of our model was developed in PyTorch (v. 1.9.1); however, developing/testing N-ACT on A100
GPUs required installation of a specific version of PyTorch (torch==1.9.0+cu111), which is provided in N-ACT’s
package repository. A complete list of requirements of Python packages is also available in N-ACT’s GitHub repository:
https://github.com/SindiLab/NACT.

Appendix B. Datasets Studied and Pre-Processing Workflow
B. 1. Pre-Processing

All data (count matrices and manual annotations) are publicly available from NCBI gene expression omnibus (GEO) and the
Broad Institute Single Cell Portal (SCP), with links provided below. Datasets were processed using the Seurat package (v.
4.1.0) in R (Butler et al., 2018). Manual annotations were merged with count matrices using a variety of tidyverse (v.
1.3.1) functions, and subsequently added to Seurat object as metadata. Data filtering consisted of the standard practice of
removing cells with fewer than 200 expressed genes and removing genes present in fewer than 3 cells. Next, we retained
cells with less than 10% mitochondrial reads to mitigate cellular debris. Lastly, cell types containing less than 100 cells
were removed and excluded from the dataset.

After filtering, we identified the top 5,000 highly variable genes (HVG’s) for each dataset (HVG procedure is detailed
in Appendix C. 3). To minimize the biological and technical effects in each dataset based on patient and/or biological
conditions such as normal versus disease state, we utilized Harmony (v 0.1.0) to perform integration (Korsunsky et al.,
2019). Resulting Uniform Manifold Approximation and Projection (UMAP) (McInnes et al., 2018) plots for each dataset
with original annotations are provided in Fig. A.3. SeuratDisk (v. 0.0.0.9019) was used to convert the Seurat data object
into an AnnData object compatible with Scanpy. To perform clustering and generate cell labels (in the unsupervised
case), we used Scanpy’s pipeline for clustering (consisting of dimensionality reduction using principal component analysis
(PCA), followed by Leiden clustering). As mentioned in the main manuscript, we found Leiden resolutions that led to the
same number of clusters as the annotated populations in order to compare our predictions to the ground truth labels.

B. 2. Datasets

To evaluate N-ACT capabilities, we chose four large datasets relevant to immune researchers in light of the current pandemic.
Three datasets are comprised of human cells, and one dataset consists of mouse cells. The three human datasets were chosen
due to the distinct disease conditions being evaluated in the original studies. These included two COVID viral infection
studies and human cSCC cancer study. We included a mouse dataset to demonstrate our model can be effectively used
on non-human and non-immune datasets. All datasets were generated using the 10x Genomics platform (see (Goodwin
et al., 2016; Heydari & Sindi, 2022) for a review of next-generation scRNAseq). A summary for each dataset is provided in
subsequent subsections (see Fig. A.3).

https://github.com/SindiLab/NACT


Figure A.3: A UMAP-reduced plot of cell populations present in each dataset investigated in this work.

B. 2.1. MOUSE-HDF

Mouse-HDF (Kan et al., 2021) [SCP1361] consists of scRNAseq of aortic cells in mice given a normal diet and mice given
a high-fat diet (HFD), resulting in 24K cells (24K cells after processing). The authors identified 27 clusters, for 10 different
cell populations.

Download Link: https://singlecell.broadinstitute.org/single cell/study/SCP1361/single

-cell-transcriptome-analysis-reveals-cellular-heterogeneity-in-the-ascending-aor

ta-of-normal-and-high-fat-diet-mice

B. 2.2. IMMUNE-CSF

Immune-CSF (Heming et al., 2021) [GSE163005] profiles single cells in cerebrospinal fluid (CSF) of Neuro-COVID,
non-inflammatory, autoimmune neurological diseases, and viral encephalitis patients. Cells isolated from 31 patients: 8
COVID patients, 9 non-inflammatory, 9 autoimmune, 5 viral encephalitis resulting in a total 80K cells. After processing the
dataset contains 70K cells with 15 populations.

Download Link: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE163005

https://singlecell.broadinstitute.org/single_cell/study/SCP1361/single-cell-transcriptome-analysis-reveals-cellular-heterogeneity-in-the-ascending-aorta-of-normal-and-high-fat-diet-mice
https://singlecell.broadinstitute.org/single_cell/study/SCP1361/single-cell-transcriptome-analysis-reveals-cellular-heterogeneity-in-the-ascending-aorta-of-normal-and-high-fat-diet-mice
https://singlecell.broadinstitute.org/single_cell/study/SCP1361/single-cell-transcriptome-analysis-reveals-cellular-heterogeneity-in-the-ascending-aorta-of-normal-and-high-fat-diet-mice
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE163005


B. 2.3. COVID PBMC

COVID-PBMC (Yao et al., 2021) [GSE163005] consists of the evaluation of the transcriptional immune dysfunction
triggered during moderate and severe COVID-19 patients using scRNA-seq. Peripheral blood mononuclear cells (PBMC)
were isolated from 20 patients and were sequenced. Patients included in the study ranged from healthy (n = 3), moderate
COVID (n = 5), acute respiratory distress syndrome (ARDS-Severe, n = 6), and recovering ARDS-Recovering (n = 6),
resulting in 69K cells. After pre-processing the dataset, we retained 64K cells. The authors identified 9 populations in the
dataset.

Download Link: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE154567

B. 2.4. IMMUNE-CSCC

Immune-cSCC (Ji et al., 2020) [GSE144236] evaluates scRNAseq of normal skin and patient cutaneous squamous cell
carcinoma (cSCC) tumors. Patients (n=10) with the cSCC tumors had normal skin and tumor cells sequenced, resulting in
48K cells. We retained 47K cells after pre-processing. The authors identified 7 major cell populations. The myeloid cell
population (CD14+Hi) is composed of various subpopulations.

Download Link: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144236

Appendix C. : Definition of Standard Mathematical Expressions and Evaluation Metrics
C. 1. Cross Entropy Loss

The downstream task was to predict the correct labels (original labels or generated labels), with the learning objective being
a standard cross-entropy loss:

H(y, ŷ) =
kX

j=1

yj log(ŷj) + (1� yj) log(1� ŷj), (A.2)

where y and ŷ denote the original/generated labels and model predicted labels, respectively. In this formulation, y is a
one-hot encoded vector of the cell types; that is

yj =

(
1 if cell type is j
0 otherwise.

C. 2. Formulation of TF-IDF for Cell Type Querying

In this work, we leverage attention scores generated for each gene in all clusters. First, we calculate the average attention
score for each gene per cluster. Next, take the top 100 genes with the highest attention scores per cluster and create an
object containing only gene names. Using the top 100 genes per cluster object, we calculate the term frequency(TF)-inverse
document frequency(IDF) for each gene in the matrix. TF-IDF is a standard tool in natural language processing (NLP) often
used to weight the importance of words appearing in documents, as shown in (A.3).

TF (g, P ) =
fP (g)

|P | (A.3a)

IDF (g,D) = � log p(g|D) = log

✓
|D|

|{P 2 D, g 2 P}|

◆
(A.3b)

TF -IDF (g, P,D) = TF (g, P ) · IDF (g,D) (A.3c)

where fP is the raw count of term (gene) g in the document (population) P , with a corpus of documents D. We consider each
row in the matrix to be a document in which we calculate gene frequencies, and then calculate the IDF, which down-weights
more common genes in the matrix. We multiply both TF and IDF for each gene to obtain the TF-IDF score. The generated
TF-IDF score down-weights common genes in the top 100 by multiplying the TF-IDF scores by the average attention scores.
Once the attention scores have been weighted, the top 25 genes per cluster are submitted to CellMeSH (CITE: PMID:
34893819), which generates a prediction cell type.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE154567
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144236


C. 3. Selecting Highly Variable Genes

To select Highly Variable Genes (HVGs), we utilized Seurat’s FindVariableFeatures() function, described in
(Stuart et al., 2019). In this step, the aim is to calculate a measure of single-cell dispersion while including the mean
expression. Step one learns a mean-variance relationship from the data, which is then used to calculate an expected standard
deviation for each gene. To do so, the mean µg and variance �g of each gene is computed from raw data. Next, a curve
fitting using a 2nd degree polynomial is applied to learn f(µg) = �̂g , providing a regularized estimator of variance given the
mean of a gene g. Using this, we perform feature transformations without removing higher-than-expected variations. That
is, given the raw counts Xig for gene g in cell i, the mean raw value for gene g, µg , and �g , the expected standard deviation
of gene g from the global fit, we have the transformed count value of gene g as:

zig =
Xig � µg

�g
, (A.4)

for all gene g across all cell i. Finally, variance across the new standard feature values is calculated and used to rank the
genes. Although the convention is to select 2,000 HVGs, we chose to select 5,000 HVGs to increase the complexity and
truly test model interpretability.

C. 4. Hit@k

Cell type retrieval position is measured using N-ACT attentive genes for each cell population using Hit@k. Hit@k is a
metric measuring retrieval of a target value among the top k retrievals. In our model, a “hit” is the published cell type
annotation (ground truth label) existing in the database. Rankings for k = {1, 3, 5, 10} are reported in Fig. 2, and in Fig.
A.4.

C. 5. F1 Score

F1 score is a standard metric for evaluating a classifier. F1 score is the harmonic mean of precision and recall, which is
shown in Eq. (A.5),

F1 = 2

✓
precision · recall
precision + recall

◆
. (A.5)

For more information on weighted and non-weighted F1 score, see https://scikit-learn.org/stable/modu
les/generated/sklearn.metrics.f1 score.html.

Appendix D. CellMeSH Cell Type Predictions
CellMeSH (Mao et al., 2021) is a probabilistic method that generates a cell type prediction based on a gene list. CellMeSH
aims to alleviate two common issues with querying gene lists from the literature: 1) publication bias, which relates to
specific genes/cell types that are studied more often than other types, and therefore have more literature associated with
them; and 2) Noise present in gene/cell-type mapping and the corresponding database. CellMesh uses a database built from
the National Library of Medicine (NLM) MEDLINE indexed records called Medical Subject Headings. In building the
CellMeSH database, Mao et al. use TF-IDF to reduce publication bias thus addressing publication bias.

To address the second issue, CellMeSH utilizes a probabilistic querying method. Given gene query list Q, CellMeSH
assumes a probabilistic model for a query genes g being obtained from a cell-type C, shown in Eq. (A.6):

P (g|C) =

(
↵ · wC(g) g 2 Q \ C

(1� ↵) · 1
Ng�KC

g 2 Q \ C
(A.6)

with wC(g) being the adjusted weight of gene g in cell type C (using TF-IDF), Ng,KC denoting the total number of genes
and total number genes with non-zero weight in C. ↵ is a parameter which aims to help with noise in the database. For each
candidate cell type C, CellMeSH calculates a log-likelihood score:

L(Q|C) = logP (Q|C) =
X

g

logP (g|C), (A.7)

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html


which are then used to rank C based on their values. Lastly, CellMeSH uses a maximum likelihood-based estimation to
generate predictions. In this framework, the top cell type, C⇤, can be found as:

C
⇤ = argmaxC logL(Q|C). (A.8)

Appendix E. : Main Manuscript Results (Larger Figures)

Figure A.4: (For the ease of the reader) An enlarged version of Hit@K results, initially presented in Fig. 2 of the main manuscript.

Figure A.5: (For the ease of the reader) An enlarged version of correlation results presented in Fig. 2 of the main manuscript.



Appendix F. N-ACT Architecture Details

Figure A.6: A Detailed View of N-ACT and the Multi-Headed Projection Module. We dive deeper into the projection block of
N-ACT in Appendix F. An implementation view of the DL architecture is presented in Fig. A.7.

F. 1. Projection Block

The idea behind the N-ACT projection block is to learn various representations for different gene subsets in each cell.
Projection block design was inspired by the multi-head attention architecture presented in (Vaswani et al., 2017); however,
the projections are not multi-head attention mechanisms. One way to think about the multi-head projection block is to view
it as a set of h linear projections, with each lh : RB⇥N ! RB⇥d (B is the number of samples and N is the number of
genes) done sequentially and independent of one-another (e.g. in a for loop). However, as noted by (Vaswani et al., 2017),
these projections can be done more efficiently through creating a tensor L 2 RB⇥h⇥d, which acts the same way as the
collection of the individual linear operators. In this formulation, 0 ⌘ N(mod h), and the last projection component, the



Figure A.7: An Implementation View of the N-ACT DL Core. In this illustration, C corresponds to the number of cells inputted, N
denotes the number of features (N = 5000 in our results), h is the number of projection heads, k is the number of projection blocks(in
our model, h = 10 and k = 2) and T denotes the number of classes (distinct labels) present in the data.

“concatenation” layer (depicted in Fig. A.6) allows us to reshape the model output which can be passed along to remaining
layers.

To increase model capacity and allow N-ACT to learn complex mappings, outputs are non-linearly “activated” through a
Point-Wise Feed Forward Neural Network (which can be thought of as 1⇥ 1 convolution). However, there is the possibility
of projection blocks learning a non-linear mapping unrelated to interpretability, resulting in loss of interpretability. Therefore,
we hypothesized that adding residual connection between output of the attention module and input of each subsequent layer
would improve performance and interpretability. Our ablation studies show that adding a residual connection improves
model performance (Table A.3). Skip connections are added to projection block outputs and normalized using Layer-Norm
(Ba et al., 2016)) before being used as input for the next layer.

F. 2. Multi-Head Ablation Study

We investigated the effect of head number in the multi-head projection block and found that 10 heads provided the best
results (Table A.2). We also tested our model accuracy when using one, two and three projection blocks and found that two
projection blocks provided the best balance of accuracy and efficiency. To test our hypothesis regarding residual connections,
we tested N-ACT (10 heads, 2 projection blocks) with and without skip connections. As shown in Table A.3, model accuracy
drops without the residual connections. Residual connections are identity mappings added to the output of each layer, with
this quantity normalized and used as inputs for subsequent layers.

Table A.2: Ablation Study on the Number of Projection Heads. We fixed all other hyperparameters and studied the effect of head
number on accuracy and interpretability. Training times are the average of 5 training runs on an A100 GPU. Accuracy of each model
remained the same across different training settings, since all random parameters were initialized with the same random seed.

NUMBER OF HEADS W-F1 NW-F1 HIT@5 AVG. TRAINING TIME

1 0.9278 0.8968 0.85 9.11± 0.14 (MIN)
5 0.9317 0.9077 0.85 9.38± 0.31 (MIN)
8 0.9307 0.9156 1.00 9.31± 0.22 (MIN)

10 0.9322 0.9173 1.00 9.56± 0.27 (MIN)
20 0.9324 0.9156 1.00 9.87± 0.24 (MIN)

Table A.3: Effectiveness of Residual Connections on N-ACT.

RESIDUAL CONNECTION? W-F1 NW-F1

YES 0.9322 0.9173
NO 0.9243 0.8725



F. 3. Training Scheme

As mentioned in the main manuscript, we train N-ACT for 50 epochs using Adam (Kingma & Ba, 2014) optimizer, with
a fixed learning rate. We tested training N-ACT for more epochs and found that the accuracy of predictions increases;
however, a learning rate scheduling is beneficial in avoiding overfitting (when training over 100 epochs). When training for
longer epochs, we employed an exponential learning rate decay with � = 0.95 and a decay schedule of every 10 epochs. We
chose 50 epochs to balance accuracy and training time efficiency.

F. 4. Supervised ACTI Comparison

Table A.4: Benchmarking N-ACT on Supervised ACTI. Although the main goal of N-ACT is interpretable ACTI in an unsupervised
manner, our model can be used in a supervised setting as well, while still providing biological interpretability. The reported training times
are the median of 5 runs for each model. The same random seed was used to initialize all random parameters to ensure reproducibility of
results across different runs. Training/Testing Support: the number of samples used in training/evaluation, W-F1: Weighted F1 score,
NW-F1: Non-Weighted F1 score

MODEL W-F1 NW-F1 TRAINING SUPPORT TESTING SUPPORT MED. TRAINING TIME

MOUSE HDF
ACTINN 0.9703 0.9677 21,003 2,998 1.5 MINUTES
N-ACT (OURS) 0.9681 0.9712 21,003 2,998 5.4 MINUTES

IMMUNE CSF
ACTINN 0.9357 0.8898 66,549 8,991 3.8 MINUTES
N-ACT (OURS) 0.9285 0.8963 66,549 8,991 11.2 MINUTES

COVID PBMC
ACTINN 0.9323 0.9148 55,005 9,864 3.1 MINUTES
N-ACT (OURS) 0.9322 0.9173 55,005 9,864 9.4 MINUTES

IMMUNE CSCC
ACTINN 0.9646 0.9315 40,027 6,994 2.4 MINUTES
N-ACT (OURS) 0.9684 0.9455 40,027 6,994 7.7 MINUTES

Appendix G. Utility of N-ACT for Disambiguation of Broad Annotations

Figure A.8: N-ACT Used to Disambiguate Broad Annotations. Here, we use N-ACT-identified salient genes to query a specialized
database (Azimuth) to disambiguate original broad manual annotations.



Given that many manual annotations are typically performed with only a few genes (often two or three (Luecken &
Theis, 2019)), it is possible to have populations that are broad and ambiguous. This was the case with two populations of
COVID PBMC data (Yao et al., 2021), namely the original annotations “Proliferating Lymphocytes” and “ Unidentified
Lymphocytes” (Fig. A.8). Here we utilize N-ACT to disambiguate these broad annotations without re-clustering or further
complex analyses.

In the results shown in the main manuscript, we utilized CellMesh (Mao et al., 2021). However, using specialized databases
could provide refined predictions. To demonstrate this, we investigated the two broad annotations in the COVID PBMC data
and queried attentive genes from the Azimuth Cell Type 2021 database tailored for immune cells (Hao et al., 2021) [using
Enrichr R Package (v 3.0) (Chen et al., 2013; Kuleshov et al., 2016; Xie et al., 2021)], to perform an enrichment analysis.
We query our top 25 genes against the Azimuth Cell Types 2021 reference for the enrichment analysis and select the top 25
attentive genes (as described in 4.2 and Appendix C) for “proliferating lymphocytes” and “unidentified lymphocytes.”

Our enrichment analysis for “proliferating lymphocytes” resulted in multiple significant (significant adjusted p�values)
populations, with the most probable types being CD8+ proliferating T cells (shown in A.8). Intuitively, these results
are expected given the quantitative and qualitative similarity of this population with the CD8+ T cell population. It is
important to note that the difference in gene overlap percentages of top three predictions, namely CD8 proliferating T, CD4
proliferating T, and proliferating natural killer populations is very small, which may explain why the original annotations
were left broadly as proliferating lymphocytes. Enrichment analysis for “unidentified lymphocytes” yielded natural killer
cells as the most probable cell type, with other viable populations also being statistically significant. Similar to the previous
population, our results are possibly intuitive given the closeness of the proliferating lymphocytes to CD8+ T cells and natural
killer cells. Additionally, there is known overlap in the gene sets between of CD8+ T cells and natural killer cells. Lastly, we
note that the second most probable population based on attentive genes are CD8+ effector memory T, suggesting that the
“unidentified lymphocyte” population could likely be refined into two or more populations. These results further signify the
utility of N-ACT for unsupervised annotation, and the applicability of our framework in tandem with other annotation forms
to provide interpretability and validation.
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