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Abstract
Existing RNA velocity estimation methods rely
on strong assumptions of predefined dynamics
and cell-agnostic constant transcriptional rates,
which are often violated in complex and heteroge-
neous single-cell RNA sequencing (scRNA-seq)
data. To overcome these limitations, we present
DeepVelo, a novel method that estimates cell-
specific dynamics of transcriptional kinetics us-
ing a Graph Convolution Neural Network (GCN)
model and generalizes RNA velocity to cell pop-
ulations containing time-dependent kinetics and
multiple lineages. We applied DeepVelo to com-
plex developmental datasets, including dentate
gyrus and hindbrain neurogenesis, and demon-
strated its ability to disentangle multifaceted kinet-
ics. DeepVelo infers time-varying cellular rates of
transcription, splicing and degradation, recovers
each cell’s stage in the underlying differentiation
process, and detects putative driver genes regulat-
ing these processes. By relaxing the constraints
of previous techniques, DeepVelo facilitates the
study of more complex differentiation and lineage
decision events in heterogeneous scRNA-seq data.
The DeepVelo package is available at https:
//github.com/bowang-lab/DeepVelo.

1. Introduction
The concept of RNA velocity refers to the rate of change
of mRNA abundance in a cell, which reflects varying lev-
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els of RNA processing and degradation. Current velocity
estimation methods leverage the abundance and ratio be-
tween unspliced pre-messenger RNAs and spliced mature
messenger RNAs to infer changes in gene expression dy-
namics. Since unspliced mRNAs can be distinguished in
common single-cell RNA sequencing (scRNA-seq) proto-
cols (La Manno et al., 2018), estimating dynamic RNA
velocity using only static sequencing libraries is feasible.

The original RNA velocity approach (La Manno et al., 2018)
utilized the assumption that the observed transcriptional
phases in scRNA-seq last long enough to reach both an
apex of induction and a quiescent steady-state equilibrium.
A more recent approach, scVelo (Bergen et al., 2020), at-
tempted to generalize the steady-state assumption by re-
placing it with four transcriptional states and a dynamical
model. Both of these existing techniques assume each gene
follows a pre-defined trajectory depicted by constant, cell-
agnostic kinetic rates of RNA dynamics. This workflow
implies that each gene goes through a shared velocity tra-
jectory across all celltypes, and limits the application in
complex multi-lineage systems (Bergen et al., 2021; Gorin
et al., 2022).

To resolve these limitations, we propose DeepVelo, a deep
neural network based method that models RNA velocity
without pre-defined kinetic patterns. Empowered by deep
Graph Convolutional Networks (GCN), DeepVelo infers
gene-specific and cell-specific RNA transcription, splicing,
and degradation rates. Compared with existing techniques
that use cell-agnostic parameters (La Manno et al., 2018;
Bergen et al., 2020), DeepVelo is able to model RNA ve-
locity for dynamics of high complexity - particularly for
cell populations with highly heterogeneous celltypes and
multiple lineages. We demonstrate the efficacy of Deep-
Velo on multiple developmental scRNA-seq datasets and
find that DeepVelo yields more consistent velocity estimates
and accurately identifies transcriptional states compared to
existing models. DeepVelo exceeds the capacity of exist-
ing models in realistic single-cell datasets with multiple
trajectories/lineages.

https://github.com/bowang-lab/DeepVelo
https://github.com/bowang-lab/DeepVelo
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Figure 1. Overview of the DeepVelo pipeline and velocity pre-
diction method. (a) DeepVelo estimates cell-specific transcription
(αi), RNA splicing (βi) and RNA degradation rates (γi). (b)
Overview of the velocity analysis pipeline using DeepVelo. (c)
Overview of the DeepVelo GCN model.

2. Methods
2.1. The differential processes of RNA velocity

For each cell, the dynamics of RNA transcription, splic-
ing, and degradation (Fig.1a) can be approximated as the
following differential processes

du(t)
dt = αi,g − βi,gu (t) ,

ds(t)
dt = βi,gu (t)− γi,gs (t) .

(1)

where αi,g, βi,g, γi,g are the kinetic rates for cell i and gene
g. t denotes a time coordinate in the developmental dynam-
ics. Unspliced immature mRNA is first generated by tran-
scription of DNA and then post-transcriptionally modified
and spliced into mature mRNA. The dynamics of unspliced
RNA abundance, du(t)

dt , are modeled by the first differen-
tial equation of Eq.1, where αi,g and βi,g denote the rates
of transcription and splicing, respectively. Similarly, the
second equation models the dynamics of spliced RNA abun-
dance, and γi,g denotes the rate for RNA degradation. These
kinetic rates are intrinsically cell-specific since there is a
high degree of variability in transcriptional dynamics be-
tween cells (Hsu & Moses; Larsson et al., 2019). However,
previous velocity estimation techniques assume global
constant kinetic rates across cells..

2.2. The DeepVelo model and cell-specific prediction

Given the unspliced gene counts u(t) and spliced gene
counts s(t) for individual cells obtained in a scRNA-seq ex-
periment, DeepVelo estimates the RNA velocity, ds(t)

dt , by
modeling cell and gene-specific coefficients αi,g, βi,g, γi,g
in Eq.1 using a Graph Convolutional Neural Network
(GCN). As opposed to previous techniques (La Manno et al.,
2018; Bergen et al., 2020), DeepVelo models the coefficients
per each cell and each gene (Fig.1c), providing more faithful

RNA velocity estimates for individual cells.

Graph convolutional network (GCN). The GCN learns
node embeddings based on message passing along the graph
edges (Kipf & Welling, 2016). Given a graph of nodes
V and adjacency matrix A, a multi-layer neural network
is constructed on the graph with the following layer-wise
propagation rule:

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)), (2)

where H(l) denotes the node feature vectors at the l-th layer,
Ã = A + IN is the adjacency matrix, D̃ is the diagonal
degree matrix such that D̃ii =

∑
j Ãij , W (l) is the layer-

specific trainable parameter matrix, and σ is the activation
function (e.g. ReLU).

As input, we build a nearest neighbor graph based on the
expression values of sequenced cells G = (V, E). The
vertex vi ∈ V in the graph denotes the expression reads
of cell i, which includes the spliced and unspliced gene
expression values vi = [si, ui]. A cell i is connected to cell
j (i.e. Eij = 1) if cell j is one of its nearest neighbors. The
DeepVelo GCN model consists of stacked graph convolution
layers (Eq.2).

Cell-specific prediction. The output of the final layer, HL,
is processed by a fully connected neural network, which
then yields the estimated velocity parameters α ∈ RN×D,
β ∈ RN×D and γ ∈ RN×D for all N cells and D genes.
Finally, the estimated RNA velocity vi ∈ RD for each cell
is computed as

ṽi = βiui − γisi, (3)

where βi and γi are the i-th row in β and γ, ui and si are the
unspliced and spliced reads of cell i. In summary, DeepVelo
predicts a cell’s velocity vector and extrapolates the cell
state to match future states extracted from the sequencing
data (Fig.1c).

Training DeepVelo. To optimize the parameters in the
DeepVelo model, we introduce a probabilistic objective
function to calculate the difference between the estimated
future cellular state si+ ṽi and the possible future cell states.
For each cell ,i, in the sequenced population Ω, we assumed
there exists a ”t+ 1” neighborhood, Ñi,t+1, such that cells
in the neighborhood contain gene expression values similar
to possible future cell i at developmental time t+ 1. This
continuity assumption can be expressed as the following
equation,

1

Ω

∑
i∈Ω

si + vi −
∑

j∈Ni,t+1

sjP (i→ j)

 ≈ 0, (4)

where i → j denotes that cell i develops at time t + 1
into a cell that has similar gene expression values as cell j,
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and P (i → j) is the probability of this event. We use this
relation (Eq.4) to derive the loss function to optimize the
estimated ṽi, as follows,

L+ =
1

Ω

∑
i∈Ω

si + ṽi −
∑
j∈Ñi

sjPc+ (i→ j)

2

, (5)

where ṽi, Ñi and Pc+ are estimated by DeepVelo. To be
specific, Ñi contains a large pool of candidate target cells
for each cell i selected by nearest-neighbor search in the
principal component analysis (PCA) reduction of gene ex-
pression values. We used the top 30 neighbors by default
for all experiments. Pc+ uses the cosine similarity between
ṽi and sj − si at each iteration. The probabilities for i→ j
with positive cosine similarities are set to a uniform distribu-
tion, and the probabilities are set to zero for the others with
non-positive similarities.

Apart from L+, we use L− to model target cells at time
t− 1 similarly,

L− =
1

Ω

∑
i∈Ω

si − ṽi −
∑
j∈Ñi

sjPc− (i← j)

2

, (6)

and we add a direction term of Pearson correlation coeffi-
cients to encourage the correct sign of ṽi values,

LPearson = − (λucorr(ṽi, ui) + λscorr(ṽi,−si)) . (7)

Overall, DeepVelo is optimized iteratively by minimizing
Lc = L+ + L− + LPearson. This promotes the predicted
RNA velocities to match the observed target cells in the
sequenced datasets.

3. Results
3.1. DeepVelo recovers complex transcriptional

dynamics for individual cells

To test the ability of DeepVelo to identify complex kinet-
ics, we utilized a neurogenesis scRNA-seq dataset of the
developing mouse dentate gyrus (Hochgerner et al., 2018)
consisting of tissue samples from two time points, P12 and
P35 (postnatal day 12 and 35), collected by droplet-based
single-cell RNA sequencing. After pre-processing, we cal-
culated the RNA velocities using the proposed DeepVelo
model and the dynamical model from scVelo (Bergen et al.,
2020). The velocity plots show the projection of calculated
velocity vectors onto the UMAP (McInnes et al., 2018)-
based embedding of the scRNA-seq data. In the velocity
estimates (Fig.2a), DeepVelo accurately recovers ground-
truth developmental directions aligned with existing liter-
ature. In particular, the granule cell lineage dominates the
main structure in the plot, where neuroblast cells develop

into immature and mature granule cells. The directions
of DeepVelo velocity estimates between celltypes follow
ground-truth patterns validated by Hochgerner et al. (2018).

a. DeepVelo Overall Consistency, p < 10-300

Celltype-wise Consistency , p < 10-300

b.

c.

Figure 2. (a) Velocity plot for dentate gyrus neurogenesis
(Hochgerner et al., 2018) using DeepVelo. (b) The histogram
of the overall consistency scores. (c) The histogram of the celltype-
wise consistency scores. DeepVelo achieves higher scores in (b,c)
compared to the dynamic (scVelo) model (Bergen et al., 2020).

Further, DeepVelo quantitatively shows better performance
through higher consistency of RNA velocity values. To
compute consistency of velocity estimates, we (1) compute
the average cosine similarity of the velocity vector of each
cell to its neighbors, which defines the overall consistency,
and (2) since the overall consistency could be biased toward
over-smoothened estimations, we also propose a celltype-
wise consistency to complement the overall score. The
celltype-wise consistency computes the average cosine sim-
ilarity of each cell’s velocity to all velocity vectors of the
same celltype. For both metrics, DeepVelo shows signifi-
cant improvements over the scVelo dynamical method, with
higher average consistency scores (Mann-Whitney U Test
p < 1× 10−300, Fig.2b,c).

3.2. Cell-specific kinetic rate estimates enable accurate
quantification of time-dependant and branching
gene dynamics

Due to the cell-specific estimation of (αi,g, βi,g, γi,g in
Eq.1), DeepVelo for the first time provides a profile of in-
dividual kinetic rates for each cell. In Fig.3a, we show the
UMAP projection of all cell-specific kinetic rates of 2930
cells of the dentate gyrus dataset from the previous section.
Although DeepVelo is unaware of celltype labels during
training, the learned kinetic rates are naturally clustered
into groups corresponding to ground-truth celltypes. Further,
clusters of cells from the same lineage (e.g. the outlined
granule lineage) are positioned closely compared to other
cells. Overall, the similarity of learned cell-specific kinetic
rates reflects the biological similarity of cells at both the
celltype and lineage levels.

Velocity-associated kinetic rates across cells may vary for
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c.b. Tmsb10 portrait by DeepVelo Tmsb10 portrait by scVelo(dynamical)

a. UMAP of cell-specific kinetic rates

Figure 3. (a) UMAP of cell-specific kinetic rates show clusters
consistent with celltypes. (b,c) Velocity vectors in the un-
spliced/spliced phase portrait of Tmsb10, computed by DeepVelo
and the scVelo dynamical model respectively.

genes undergoing dynamic regulation involving multiple
processes. These varying kinetics are often misinterpreted
in existing velocity methods (Bergen et al., 2021). This
stems from the fact that previous methods used constant
cell-agnostic coefficients for modeling the kinetic rates in
(Eq.1). In contrast, DeepVelo provides estimates for dif-
ferent celltypes and cell-states by introducing cell-specific
kinetic rates, leading to more biologically accurate velocity
estimation in multi-faceted systems.

In the mouse dentate gyrus dataset (Hochgerner et al., 2018),
Tmsb10 shows multiple kinetic regimes and trajectories in
the phase portrait of spliced and unspliced reads. The cells
in the granule lineage (including neuroblast, granule imma-
ture and granule mature celltypes) form a cyclic trajectory.
The endothelial cells, which are not a part of this lineage,
also undergo dynamics for Tsmb10 (Fig.3b,c). These two
regimes are very likely regulated by different kinetic rates.

For the multi-faceted dynamics of Tsmb10, DeepVelo cor-
rectly predicted the patterns for both regimes of Tsmb10
(Fig.3b). For the granule lineage, DeepVelo captures the di-
rection of velocity from neuroblast cells to granule immature
cells and then to granule mature cells. For the endothelial
cells, the predicted velocity direction correctly points to the
position of the same celltype with amplified spliced reads
(Fig.3b - Zoom-in panel). In contrast to DeepVelo, scVelo
forces the velocities to follow the assumed cyclic trajectory
of the model (Fig.3c). As a result, although scVelo suc-

cessfully captures the trajectory for the granule lineage, it
incorrectly predicts the velocities of endothelial cells to lead
towards differentiation of neuroblasts, (Fig.3c - Zoom-in
panel). Overall, DeepVelo is capable of predicting celltype-
specific velocity for cells within the same region, due to the
advantage of cell-specific kinetic rate estimation (Fig.3b).

3.3. Predicting differentiation and driver genes in
multi-lineage hindbrain developmental data

To test velocity methods in a complex setting with multi-
ple lineages, we applied DeepVelo and scVelo on a mouse
hindbrain development dataset comprising of the GABAer-
gic and gliogenic lineages (Vladoiu et al., 2019) (Fig.4(a)).
DeepVelo’s ability to learn cell-specific kinetic rates ac-
counts for the multi-faceted differentiation present in this
multi-lineage system. The result of DeepVelo (Fig.4(b))
shows RNA velocity vectors over the developmental pro-
cess from Neural stem cells to the differentiating GABA
interneurons and gliogenic progenitors. We performed tra-
jectory inference using PAGA (Wolf et al., 2019) over the
velocity graph of DeepVelo, and found that DeepVelo was
able to recapitulate the ground-truth differentiation pattern
- specifically the branching between VZ progenitors and
differentiating GABA interneurons, and VZ progenitors and
gliogenic progenitors (Fig.4 (c)).

a. DeepVelob. Trajectory Inferencec.
Neural stem cells

Proliferating VZ progenitors

VZ progenitors

Differentiating GABA interneurons

Gliogenic progenitors

GABA interneurons

Developmental orders

Figure 4. The (a) ground-truth trajectory, (b) DeepVelo velocity
estimates, and (c) DeepVelo inferred trajectory for the mouse
hindbrain dataset.

Further, we found that DeepVelo was able to predict impor-
tant driver genes in the differentiation of the GABAergic and
gliogenic lineages, and was able to do so at a significantly
higher rate than the scVelo dynamical model (Table.1). Us-
ing the velocity estimates of DeepVelo, we utilized the Cell-
Rank (Lange et al., 2020) technique to estimate driver gene
relevance. Analyzing the top 100 driver gene results, Deep-
Velo indicated higher enrichment for known marker genes
from the Vladoiu et al. (2019) dataset, and annotated mouse
transcription factors, which are both more likely to have
a functional role in driving differentiation. Pathway en-
richment analysis of the top predicted driver genes was
performed using Gene Ontology (GO) and REACTOME
pathway databases. The result for DeepVelo indicated signif-
icant recovery of relevant functional terms for neurogenesis
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and development (as a percentage of enriched pathways)
compared to scVelo for the GABAergic lineage, while the
percentages were fairly similar for the gliogenic lineage.

Table 1. Driver-gene analysis results of the GABAergic and Glio-
genic hindbrain development lineages.

scVelo DeepVelo
Top 100 driver genes GABAergic Gliogenic GABAergic Gliogenic

Marker gene
overlap 44 66 86 81

Transcription-factor
overlap 10 5 14 5

Pathway relevance
percentage 19.4 51.3 62.9 58.3

4. Conclusion
DeepVelo is a novel GCN framework for estimating RNA
velocity that is not limited by assumptions of constant, cell-
agnostic RNA transcription, splicing, and degradation rates.
By estimating these rates at a cell-specific level, it out-
performs current state-of-the-art techniques on challenging
scRNA-seq datasets with more consistent velocity estimates,
has the ability to generate multi-faceted velocities for each
gene, and can model complex multi-lineage dynamics.

RNA velocity estimation remains a major challenge due
to complex dynamics, limitations in modelling, and
sparse/noisy RNA readouts in common sequencing proto-
cols (Bergen et al., 2021; Gorin et al., 2022). DeepVelo
undoes a major assumption of previous methods by taking
into account cell-specific ”bursting” RNA expression kinet-
ics and the tendency of similar cells to share these kinetic
patterns. Through this, DeepVelo offers a step towards a
generalized and biologically accurate framework of RNA
velocity estimation.
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