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Abstract
Characterization of temporal dynamics in gene
expression has the potential to reveal the complex
regulatory mechanisms underlying cell state tran-
sitions in healthy and disease conditions. How-
ever, the ability to compare expression of genes or
modules of genes between conditions or cell fates
is hindered by the necessity of incorporating the
temporal dependency associated with such tran-
sitions. We propose a probabilistic factor model
for the decomposition of temporal gene expres-
sion into a representative set of patterns. We de-
sign a scalable inference method to process effi-
ciently thousands of genes that evolve over hun-
dreds of time points. The learned representative
patterns reveal the dynamics underlying the data,
meanwhile the decomposition of each gene can
be used in downstream tasks such as clustering.
We demonstrate the utility of the method by un-
covering latent patterns and regulatory networks
corresponding to leukemogenesis and progression
of disease in Acute Myeloid Leukemia.

1. Introduction
Recent advances in the temporal analysis of single cell ge-
nomic data have enabled novel insights into understanding
cell state transitions in normal development, regeneration,
and disease. The temporal dimension may be experimen-
tally observed, as in the case of acquiring multiple samples
over the course of development or therapy; or computation-
ally derived, via pseudotime or trajectory inference methods
such as CellRank (Lange et al., 2022), Wishbone (Setty
et al., 2016), and Monocle (Trapnell et al., 2014). The
ability to rank cells along a therapeutic or developmental
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timeline creates the need for computational methods and sta-
tistical metrics that can dissect the ways in which the gene
expression landscape is shifting in conjunction. Importantly,
identifying gene expression dynamics over time would help
uncover gene programs associated with normal or diseased
cell fates, which could lead to the discovery of novel mark-
ers involved in disease initiation and progression, guiding
early disease detection and design of novel therapeutics.

The ability to perform comparisons between temporal gene
patterns (Fig. 1), however, is not straightforward. Sta-
tistical tests such as common differential gene expression
analyses assuming independence between samples or cells
are insufficient due to the inability to account for temporal
dynamics–two genes may have the same mean expression
value, but opposite expression patterns, e.g. ascending ver-
sus descending over time. More sophisticated methods such
as DPGP (McDowell et al., 2018) and tradeSeq (Van den
Berge et al., 2020) are also limited–DPGP utilizes Gaussian
Processes, which are computationally expensive and lim-
ited in scalability. TradeSeq, on the other hand, performs
trajectory-based differential expression by utilizing the as-
sumption that the temporal patterns may be approximated
by splines, and relies on built-in denoising that limits user
flexibility in upstream preprocessing.

We propose a scalable basis decomposition approach based
on a probabilistic factor model for characterization of tempo-
ral gene expression patterns. Without making assumptions
as to the form of the patterns, our method is able to learn a
set of common patterns, called representative basis patterns,
across all genes. Individual genes can then be represented as
a combination of one or more representative patterns. To en-
sure scalability, we leverage neural networks to approximate
Gaussian Processes in parameterizing the bases.

Since the bases are shared across all genes, comparison
of patterns is then easily performed by computing the Eu-
clidean distance between the basis weights. Importantly,
this distance takes the temporal dependencies into account,
since each basis represents a pattern preserving the order of
cells or samples over time. Furthermore, the basis decom-
position process allows for the uncovering of shared gene
regulatory patterns, which may then be used to inform novel
insights into underlying mechanisms determining cell fate.
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Figure 1: Examples of gene patterns under disease (top) and
healthy (bottom) conditions. The model reconstructs the
patterns with only K = 5 bases.

2. Model
The data. The input data of the model is a collection of gene
patterns observed over a time or pseudotime axis in different
conditions, such as normal, disease, or perturbed (Fig. 1).
A pattern µg,c for a gene g under condition (or trajectory)
c is a function t ∈ [0, 1] 7→ µg,c(t) which represents the
expected expression of gene g at time t in condition c. This
function can be obtained with time-series bulk RNA-seq or
trajectory inference methods (Trapnell et al., 2014; Setty
et al., 2016), applied in advance to single-cell RNA-seq data.
While this paper focuses on applications to gene expression,
the patterns can also represent other dynamic features such
as chromatin accessibility (measured with ATAC-seq) or
protein expression (CITE-seq).

The set of all genes is denoted as G and the set of condi-
tions as C. For simplicity of the exposition, we restrict the
conditions to C = {healthy, disease}. The input data is the
collection of functions D = (µg,c)g∈G,c∈C . The data has
|G| · |C| observations, each of which is a function. In the
proposed probabilistic model, each pattern t 7→ µg,c(t) is
considered as a single observation. Figure 1 shows examples
of gene patterns.

The model. In light of commonly used generative models
(Blei, 2014), the proposed model is a linear factor model,
operating in function space. For gene g and condition c, the
model associates the data point µg,c with a latent vector βg,c

of K dimensions. Each dimension k corresponds to a latent
basis pattern t 7→ bk(t). The βg,c,k are coefficients for the
function µg,c in this basis. The observations µg,c and the
latent basis bk are functions. The weights βg,c,k combine the
latent basis bk to generate the observed function µg,c. That
is, informally, µg,c ≈

∑K
k=1 βg,c,kbk. Each, basis function

bk forms a representative pattern shared by multiple genes.

The weights βg,c,k. To ensure interpretability of the
weights, the model mimics methods like non negative ma-
trix factorization (Lee & Seung, 1999) and draws positive

gene 

condition 

basis 

Figure 2: Graphical model for the functional factor model.

weights. With this, a non-zero weight βg,c,k signifies that
gene g in condition c exhibits the representative pattern
k. Specifically, each weight βg,c,k is drawn independently
from an exponential distribution with mean η, denoted as
E(η), and with density

p(β|η) = ηe−ηβ
1 (β ≥ 0) .

In term of negative log-likelihood, this prior induces the
ℓ1 regularization of the coefficients βg,c,k, with strength η,
which will lead to sparsity and even better interpretability
of the basis as shown in section 4.

The function basis bk. In order to sample the basis func-
tions bk, we represent them as neural networks and we
sample each bk by drawing its neural networks parame-
ters. Concretely, each basis function is modeled by a one-
dimensional neural network with two hidden layers of 32
units each, followed by the tanh activation. The neural
network bk is of the form

bk : R → R32 → R32 → R

and its parameters are denoted θk. Each θk is sampled from
a centered diagonal normal distribution and the variance
of each of its coordinates is set to the inverse of the input
dimension of the linear layer in which it appears. The study
of infinite neural networks in Neal (1996) demonstrates that
with wide hidden units (here 32 ≫ 1), and such a prior on
the parameters, the induced prior in function space is close
to a Gaussian process. Gaussian processes are used in other
methods (McDowell et al., 2018), but are hardly scalable.
Using neural networks for efficient computations solves the
problem. We show samples from this prior in figure 6. The
induced prior in function space is denoted by φ.

The observations µg,c. Finally, the gene pattern µg,c is
generated from a distribution parameterized by

∑
k βg,c,kbk.

More specifically, µg,c is sampled from a Gaussian process1

1Because the Gaussian Process is used here only to define the
distribution of the observations, and not to sample an unobserved
latent variable, there is no computational difficulty in using it.
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with mean
∑

k βg,c,kbk and with a white Gaussian noise
kernel (x, x′) 7→ σ2δx,x′ of variance σ2.

The generative process is represented graphically in figure
2 and proceeds as follows:

1. For each factor dimension k ∈ J1,KK, draw a basis
function bk from the function prior: bk ∼ φ(bk) (that is
draw weights θk according to the prior detailed above)

2. For each gene g, and condition c do:

(a) For each factor dimension k, draw the basis
weight βg,c,k ∼ E(η)

(b) Draw the observed function µg,c from µg,c ∼

GP
(∑

k

βg,c,kbk, (x, x
′) 7→ σ2δx,x′

)
.

For simplicity of notations, the θk are grouped in parameter
θ, and the βg,c,k into parameter β.

3. Inference
Conditioned on the observed data D, the generative model
defines a posterior distribution over the global and local
latent variables: p(θ, β|D). The posterior distribution places
probability mass on the basis functions that represent the
dominant patterns in the data. In addition, the posterior
locates the local weights of each gene expression pattern
µg,c. The weights capture how each gene expression pattern
exhibits each of the representative patterns. The weights
can also be interpreted as a low-dimensional embedding
of the gene expression trends, which can then be used for
downstream analysis like clustering (see Section 4).

The exact posterior is intractable, so we use variational
inference to approximate it (Jordan et al., 1999; Wainwright
& Jordan, 2008; Blei et al., 2017). Variational inference
defines a family of approximate distributions Q over the
latent variables, and then attempt to find the member of this
family that is the closest to the exact posterior. This way,
variational inference transforms the posterior inference task
into an optimization problem.

The variational family. We use a mean-field approxi-
mation for the variational family, such that the variational
distribution factorizes as

q(θ, β) =
∏
k,j

q(θk,j)
∏
g,c,k

q(βg,c,k).

For the approximated posterior over the neural network pa-
rameters θk,j , we use a Gaussian posterior with learnable
mean and variance. For the basis weights βg,c,k, we use a
log-Gaussian posterior with learnable mean and variance.

For a more efficient algorithm, we can also use point esti-
mates of these quantities instead of the Gaussian approxima-
tions. It is equivalent to performing a maximum a posteriori
(MAP) estimation of the model parameters.

The evidence lower bound. In order to locate which ap-
proximate distribution q ∈ Q is closest to the exact posterior
p( . | D), variational inference minimizes the KL divergence
between q and p( . | D). This is equivalent to maximizing
the following objective function:

L(q) = Eq(θ,β) [log p(θ, β, µ)− log q(θ, β)]

also known as the evidence lower bound (ELBO).

With the specific choice of variational family, the ELBO
takes the form: L(q) = Eq(θ,β) [log p(µ|θ, β)] −
KL(q(θ)||p(θ|D))−KL(q(β)||p(β|D)) where KL is the
KL-divergence between distributions.

In practice, we evaluate the likelihood of the observations
log p(µ|θ, β) by evaluating the functions on 100 evenly
spaced time points t ∈ T , and compute the density induced
by the Gaussian process on these 100 points. Because of the
form of the Gaussian process, the evaluated points each fol-
low a Gaussian distribution. That is log p(µg,c|β, (bk)) =∑

t∈T − 1
2 log(2πσ

2)− (µg,c(t)−
∑

k βg,c,kbk(t))
2
/(2σ)

If the q are point estimates, the objective function L(q)
consists of the sum of the mean squared reconstruction
error, the L1-regularization of the weights β, and the L2-
regularization of the neural networks weights.

4. Experiments and applications
We implemented the method in Python using Pyro (Bingham
et al., 2019). The practitioner can chose which family q to
use between a Gaussian approximation or a point mass.

4.1. Scalability and performances on synthetic data

We test our method on synthetic data for different numbers
of gene patterns |G| and increasingly longer time span [0, T ].
We generate synthetic data by following the simulation pro-
posed in McDowell et al. (2018) (Data simulations). Figure
7 in the appendix shows examples of synthetic gene patterns.
We generate 3 datasets, each of them having 5 clusters of
genes and 1,050 total genes. D1 spans over 10 time points,
D2 over 25 time points, and D3 over 100 time points. The
real data contains 3,130 genes over 100 time points and 2
conditions for each gene (effectively 6,260 genes).

Clustering of genes The factor model and its inference
form an unsupervised method which provides a low dimen-
sional representation for each gene pattern (using the basis
weights). We can use these representations for downstream
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Figure 3: Heatmaps of pairwise distances of TFs in healthy c1 (A) and AML c2 (B). Basis weights for TFs in AML c2 (C).
The order of TFs is the same across rows and columns in (A),(B), and rows in (C). Basis patterns (D).

Model D1 ARI D2 ARI D3 ARI

DPGP 0.29 0.19 –
Proposed model 0.95 0.99 1.0

Table 1: ARI score of clustering synthetic datasets. The
proposed model outperforms DPGP. The Adjusted Rank
Index (ARI) improves for our model when the dataset con-
tains more time points, suggesting that a longer time horizon
helps to cluster the genes more accurately. DPGP timed out
on 100 time points (D3).

Figure 4: Gene similarity heatmaps returned by our method
(left) and DPGP (right) for dataset D1. Each row and column
represent a gene, ordered by groundtruth clusters. Similarity
between g1 and g2 is defined by exp

(
−β⊤

g1βg2

)
for our

model and by P(g1, g2 are co-clustered) for DPGP

tasks such as clustering. We compare our factor model
against DPGP (McDowell et al., 2018), a specific method
for clustering gene temporal patterns based on Gaussian
Processes. In table 1 we show that our unsupervised factor
model followed by K-means on the latent space outperforms
DPGP on the clustering task. We provide more details in
the appendix about the experiment.

Figure 4 shows the gene-gene similarity matrices computed
respectively by our model and by DPGP.

Scalability Because of its functional formulation with
neural networks, our proposed inference method can scale
to a very large number of time points and genes. In table 2
we show the running time of our method, and of DPGP. Both

methods were run on a 2019 MacBook Pro with an 8-Core
Intel Core i9 CPU. We notice that the number of time points
doesn’t affect the number of gradient updates per second of
our method (because these updates are batched), whereas
more time points can actually accelerate convergence. As a
consequence, our method scales well with number of time
points whereas DPGP doesn’t.

Model D1 D2 D3
T = 10 T = 25 T = 100

DPGP 2h18m 6h06m timeout
Proposed model 2m18s 2m23s 1m45s

Proposed model (it/s) 31 30 28

Table 2: Execution time of DPGP and of our model’s in-
ference on the synthetic datasets. Our method’s number of
gradient updates per second is almost invariant to the num-
ber of time points due to tensor multiplication acceleration.
When the dataset grows larger, the convergence can even
happen earlier.

4.2. Discover gene patterns in AML data

We apply the proposed method to single cell data derived
from bone marrow biopsies of a patient with Acute Myeloid
Leukemia (AML) and a healthy individual as control, sort-
ing for stem and progenitor (CD34+) cells. Denoised expres-
sion and pseudotime are computed using our own trajectory
inference method (in development), but any existing frame-
work can be used (e.g. Gayoso et al. (2021)). The dataset
consists of 3,130 genes, each having a healthy pattern (con-
dition c1) and an AML pattern (condition c2).

We fit the model by fixing the number of representative basis
patterns to K = 5, which is large enough to obtain a good
reconstruction error of the gene patterns. Figure 1 shows
the patterns of three genes in the two conditions of healthy
hematopoesis (bottom) and leukemia (disease AML; top).

Application for AML analysis To investigate regulatory
mechanisms underlying leukemia, we compare all transcrip-
tion factors (TFs) patterns against each other by computing
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the pairwise distance between their basis weights. Between
genes i and j in condition c we compute the normalized Eu-

clidean distance d(βi,c, βj,c) =
√∑K

k=1(β̄i,c,k − β̄j,c,k)2,

where β̄i,c,k =
βi,c,k∑K

k=1 βi,c,k
. Visual inspection of the results

indicates the presence of a large block of highly similar
transcription factors in the AML patient (Fig. 3B) that is
not present in the healthy control (Fig. 3A). This block
of transcription factors may indicate an increase in TF co-
regulation that is gained with the onset of disease. Inter-
estingly, when we observe the basis weights of each TF
(Fig. 3C), it is apparent that the block of interest is highly
weighted in basis 4. Inspection of the basis patterns (Fig.
3D) reveals that basis 4 increases towards the middle and
end of the pseudotime, which suggests some role in disease
progression. To validate these observations, we perform
Gene Set Enrichment Analysis (GSEA), ranking genes by
their weights in basis 4 (Supp. Fig. 6). Among the most
enriched results are mTOR, TNFa, hypoxia, TGF-B, and
p53, which are well-known oncogenic pathways. Together,
these results indicate that our basis decomposition method
results in interpretable basis patterns, with basis 4 being
highly implicated in cancer onset.

In further refining our analyses, we highlight some key
TFs pairs with high gains or losses in co-regulation. For
this, we evaluate for each pair (i, j) of TFs, how the pair-
wise distance d(βi,c, βj,c) changes between c = c1 and
c = c2. Using this information, we construct a graph
where nodes represent the TFs found among the pairs with
the greatest differences in pairwise distance, and edges
indicate a gained or lost relationship between two nodes
(Fig. 4). We color each node by a measure of how
much the associated TFs is disrupted between the two
conditions c1 and c2. We define the disruption score as

d(βi,c1 , βi,c2) =
√∑K

k=1(β̄i,c1,k − β̄i,c2,k)
2. By defining

both a disruption score as well as a pairwise distance, we
are able to assess not only how a TF is itself changing
between conditions (with d(βi,c1 , βi,c2)), but also how its
interactions with other TFs evolves (from d(βi,c1 , βj,c1) to
d(βi,c2 , βj,c2)).

In Figure 4, we notice four main hubs of TFs, centered
around PBX3, NR4A2, FOXO1, and PRDM1. Importantly,
all four of these TFs are implicated in the onset of AML:
PBX3 is a known cofactor of HOXA9 in leukemogenesis (Li
et al., 2013) and is significantly correlated with poor clinical
outcome in AML patients (Guo et al., 2017); the NR4A
family of genes is known to function in suppressing the
onset of myeloid leukemias (Boulet et al., 2022); FOXO1
has been shown to lead to AML through the induction of
leukemogenesis in HSCs via the Notch signaling pathway
(Kode et al., 2016); and PRDM1 has been found to be
up-regulated in RUNX1-mutated early-stage AML (Silva
et al., 2009). Interestingly, PRDM1 has a low disruption
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Figure 5: Color of node i: disruption score d(βi,c1 , βi,c2)
(the greener the higher) Node size: betweenness centrality.

score, even though it is highly centralized in the network.
This again emphasizes the importance of assessing both
individual TF temporal evolution as well as pairwise co-
evolution, and demonstrates the broad utility of our method
as a metric for addressing a variety of biological questions.

5. Discussion and future work
Our method for decomposing temporal gene expression into
representative patterns constitutes an important step towards
deciphering the mechanisms governing cell state transitions.
The patterns uncovered by the model in stem and progenitor
cells of AML and healthy patients are biologically meaning-
ful, and may be used to compare dynamics between genes.

The scalability of the method allows for the analysis of long
time horizons and thousands of genes. An exciting research
direction is the development of additional downstream anal-
ysis tools for the unsupervised latent space of the factor
model. This would complete our proposed pipelines, such
as clustering, visualizing heatmaps of pairwise distances,
and building a graph of transcription factors interactions.
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A. Experiment on synthetic data
For the synthetic data experiments, we used the probabilistic model with K = 10 factors. The synthetic data has 5 clusters.
We ran the inference with a point mass posterior for the neural network weights and a Gaussian approximation for the basis
weights.

We performed K-means on the factor model latent space for the downstream clustering. To mimic DPGP, which uses a
Dirichlet Process to automatically find the number of clusters, we used a standard selection procedure to pick automatically
a number of clusters for K-means. More precisely, we ran K-means for a wide range of K (from 2 to 20) and selected
automatically the K producing the clustering with the highest silhouette score.

Finally, we used early stopping to stop the inference procedure and produce a clustering. We stopped the inference whenever
the reconstruction loss stopped improving for 200 iterations.

B. Additional figures
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Time t

−0.8

−0.4

0.0

0.4

0.8

b(
t)

Figure 6: Five samples of one-dimensional neural networks from the prior over functions used by the model. The diversity
of the samples demonstrates the relevance of the prior to generate basis functions that will capture key patterns of the genes
evolution.
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Figure 7: Example of synthetic data generated following the procedure in McDowell et al. (2018) (5 clusters, 10 time points,
total of 105 genes)
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Figure 8: Gene Set Enrichment Analysis (GSEA) on the representative basis patterns in AML. The x-axis represents the
normalized enrichment score for each pathway, and the color gradient indicates the false discovery rate (FDR). Notably,
basis 4 contains a high number of inflammatory and cancer-associated pathways.


