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Abstract

RNA secondary structure prediction with deep
learning is challenging due to the limited train-
ing data and the inherent difficulties in predicting
structured output, necessitating good inductive
biases for generalization. In this work, we pro-
pose RTfold with the following key motivating
ideas: 1) end-to-end training combined with con-
strained optimization, 2) neural architecture with
layer-wise recurrent inductive bias, and 3) a larger
training set augmented with synthetic data for pre-
training. RTfold achieves good performance on
our preliminary evaluations, and we show how the
above three motivating ideas contribute to better
generalization.

1. Introduction

An RNA molecule’s function is often dependent on its struc-
ture. Experimentally determining RNA structures can be
challenging so computational prediction methods are often
used as alternatives or to augment the experiments. Many
computational methods focus on RNA secondary structure'
because this is easier to predict than three-dimensional struc-
ture. Furthermore, RNA functions can often be well under-
stood based on secondary structures without the full struc-
tures (Sloma & Mathews, 2016).

Given an input RNA sequence, a classical computational
approach is to use dynamic programming (DP) to predict
the optimal secondary structure, consisting of substructures
with the best total score. Methods such as RNAfold (Lorenz
et al., 2011) use free-energy measurements for scoring, but
experimental limitations restrict the types of free-energy
parameters and how accurate they can be. Alternatively, the
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'RNA secondary structure, formed by hydrogen bonds between
pairs of nucleotide bases, constitutes the scaffolding of RNA three-
dimensional structure (Mathews, 2006).

scoring parameters can be learned from datasets of known
secondary structures. In MXfold2 (Sato et al., 2021), a
deep learning model is trained to predict the scoring param-
eters. Nevertheless, the inherent assumptions underlying
DP-based algorithms — the substructure scores are additive
and context independent — might not accurately reflect the
true RNA folding and limit the types of predicted structures.

Attempts to overcome these limitations have motivated deep
learning approaches which directly predict RNA secondary
structure without DP. However, achieving good generaliza-
tion has been challenging, partly due to limited amount of
data. SPOT-RNA (Singh et al., 2019) addresses this by con-
structing a training set with 10,814 secondary structures
from bpRNA dataset (Danaee et al., 2018). SPOT-RNA out-
performs the existing DP-based methods on held-out test
data, but it does not perform as well on new datasets. Fur-
thermore, SPOT-RNA does not constrain its output to be
a valid RNA secondary structure, but incorporating struc-
tural constraints could improve generalization (Amos &
Kolter, 2017). E2Efold (Chen et al., 2020) attempts to
achieve this by constraining its output with convex optimiza-
tion. During training, the algorithm for solving the convex
problem is unrolled for back-propagation. Unfortunately,
often the output of E2Efold still significantly violates the
structural constraints because of relaxations introduced to
make this approach feasible (details in Appendix.A). Fur-
thermore, it has been shown that E2Efold generalizes poorly
outside of its training data (Sato et al., 2021; Fu et al., 2022).
UFold (Fu et al., 2022) attempts to improve upon these two
deep learning methods by using U-Net (Ronneberger et al.,
2015) based architecture with SPOT-RNA’s training set and
E2Efold’s approach for constraining the output.

DP-based methods can potentially generalize well from
strong inductive biases but DP algorithms can be limiting,
whereas deep learning models are universal approximators
without such restrictive assumptions but have difficulties
generalizing. In an attempt to bridge this gap, we propose
RTfold. Our contributions can be summarized as below:

1. We propose a framework for training a deep learning
model end-to-end with RNA secondary structure con-
straints. The constraints are formulated as a linear
program (LP) and back-propagation through this LP is
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accomplished by perturbation with Fenchel-Young loss
(Berthet et al., 2020). Our approach guarantees that the
constraints are always satisfied, and the inductive bias
helps the model generalize.

2. We propose a deep learning architecture based on layer-
wise recurrence and self-attention. Our architecture
enhances the model’s expressiveness without the corre-
sponding increase in the number of model parameters.

3. We construct a new training set larger than the one
proposed in SPOT-RNA, and augment this with pre-
training on a synthetic dataset.

2. Methods

2.1. End-to-end training with RNA secondary structure
constraints

For an input RNA sequence z of length L, a deep learning
model Fy can be trained to predict the most likely sec-
ondary structure, represented as a symmetric base-pairing
matrix M* € {0,1}2*E. However, the model output
Fo(z) € RL*L is normally unconstrained, so Fp(z) will
often violate the following three structural constraints, con-
ventionally enforced for RNA secondary structures (Steeg,
1993):

1. Canonical pairs: M;} = lonly if z;z; is AU, UA, GC,
CG, GU, or UG pairs

2. No pairing within 3 bases: M; = 0if [i — j| <3

3. At most a single pair for each base: Vz, Zle M5 <1

2.1.1. CONSTRAINED OPTIMIZATION FOR SECONDARY
STRUCTURE

Here, we describe a linear program 7 for constraining Fy (x)
into a valid secondary structure prediction M* £ T (Fp(z)).
T is formulated as’:

M* = T(Fo(x)) = arg]anax (Fo(x), M)

st. 0SM<I(x)
M1<1
M=MT,

where M € REXL, I(z) € {0,1}1*F with I(x);; = 0
for base-pairs x;x; violating the constraints 1 and 2, and 1
being an L x 1 vector of ones. The inequality involving 1
encodes the constraint 3. The solution M* is always binary
even though the optimization variable M is not constrained

2(Fo(x), M) is the Frobenius inner product and < denotes
element-wise inequality

to be so because the fundamental theorem of linear program-
ming (Thm. 6 (Dantzig et al., 1955)) states that its solution
is always on a vertex of the domain polytope. Any generic
linear programming solver can be used for 7.

Training of the neural network can be done separately with-
out 7. For instance, Fy can first be trained using the
element-wise cross-entropy loss between Fy(z) and M*3,
after which, 7 can be applied to constrain the output of the
already trained model.

However, end-to-end learning with 7 allows Fy to be
‘aware’ of the constraints during training. This inductive
bias can improve generalization, especially given the lim-
ited amount of data available for RNA secondary structures.
The biggest challenge in the end-to-end training is back-
propagating through 7.

2.1.2. DIFFERENTIATING DISCRETE OPTIMIZATION
WITH PERTURBATION AND FENCHEL-YONGE
LOSS

The predicted base-pairing matrix M* = T (Fy(z)) is dis-
crete, so 7T is not differentiable w.r.t. its input Fy(x)*. Ap-
plying a convex regularizer to the objective of Eq.1 can
make 7 differentiable, and its gradient can be computed
from the implicit differentiation of 7’s optimality condi-
tions (Amos & Kolter, 2017). Unfortunately, this approach
incurs prohibitive O(L®) computational cost w.r.t. the input
sequence length L. A solution proposed in E2Efold is back-
propagation through the unrolled algorithm, but in order
to prevent unbounded computation graph, the number of
iterations is capped by a hyper-parameter. This can result in
violation of the structural constraints because the unrolled
constrained optimization might not fully converge (details
in Appendix A).

Our proposed approach, inspired by Berthet et al. (2020),
overcomes these limitations. First, Fy(z) is perturbed with
random variable Z € RY*’ where each elements are i.i.d.
standard Gaussian. Random perturbation with Z can be
considered as an implicitly way of applying a regularizer to
relax a discrete problem (Hazan et al., 2016). Monte-Carlo
estimate of the perturbed solution Ey [T (Fy(z) + €Z)] is
computed as:

N
31 (Folw) =+ ST (Fole) +e27) @

where € > 0 is a hyperparameter controlling the scale of the
perturbation.

Then, Fenchel-Yonge (FY) loss (Blondel et al., 2020) is
applied to Eq.2, which allows easy gradient computation

*This is how SPOT-RNA is trained
*OM* /0 Fs(x) is zero almost everywhere and infinite at the
transition point from one solution to another
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without any explicit differentiation®. As shown in Section 4
of Berthet et al. (2020), the gradient can be computed as:

Vi, Le (Folw); M*) = M (Fy(x)) — M

L
=N ZT(fe(x) + eZ(”)) - M*

n=1
3)
Intuitively, the gradient of FY-loss reduces the gap between
the expectation of the perturbed output and the target, mini-
mizing the duality gap (Blondel et al., 2020; Berthet et al.,
2020).

As shown above, random perturbation with FY-loss allows
easy gradient computation without any explicit differentia-
tion, but only if repeatably solving 7 can be done efficiently.
Fortunately, 7 can be reformulated to leverage the sparsity
of Fy(z) 4+ eZ. Combined with trivial parallelization over
N random samples, computing Eq.3 can be done efficiently.

2.2. Layer-wise recursion with self-attention

The end-to-end training proposed in 2.1 is a general method
that can be applied to any type of neural architecture. In this
section, we describe our proposed architecture (Figure 3)
which orthogonally improves generalization.

Logit

Element-wise
Fully-connected
Lai

A
LxLx2d ’

Outer Concatenation

! [self-attention Layer

For 12 iterations

1D SE Block

1D Convolution

Input sequence &
L x4

Figure 1: Neural architecture of RTfold

A key highlight of the proposed architecture is layer-wise
recursion which repeatedly applies a weight-tied layer for
N number of times. Without increasing the number of
trainable parameters, layer-wise recursion can increase the
expressiveness of the model (Schwarzschild et al., 2021; Bai
et al., 2019). This recurrent inductive bias has been shown
to be important for algorithmic tasks (Kaiser & Sutskever,

S Although FY loss is not actually computed since we only
really need the gradient.

2015; Dehghani et al., 2018) and recently in protein folding
(Jumper et al., 2021). Intuitively, RNA secondary structure
prediction can be regarded as an algorithmic task of parsing
RNA folding grammar. For instance, most DP-based meth-
ods implicitly model RNA folding as context-free grammars
and use DP for parsing (Do et al., 2006). In this regard, layer-
wise recursion can provide a useful inductive-bias for RNA
secondary structure problem, in addition to being parameter
efficient compared to the conventional architectures.

The layer-wise recursion block is based on transformer self-
attention layer (Vaswani et al., 2017) with relative positional
encoding (Huang et al., 2018). Preceding it are the Squeeze-
and-Excitation blocks (Hu et al., 2018) which uses self-
attention to exploit global channel-wise information. Self-
attentions in these two types of blocks help capturing the
long-distance interactions between bases.

Most of the blocks operate on a 1D sequence. Outer con-
catenation is used to project a 1D sequence into a 2D map,
followed by element-wise fully-connected layer to compute
the final output Fy(z). This approach reduces the computa-
tional and memory complexity of R7fold compared to the
existing deep learning models, which are primarily based
on convolutional layers on 2D maps. For instance, RTfold
can infer upto 2800nt sequence length on a Nvidia Titan
Xp GPU, compared to 500nt for SPOT-RNA on the same
GPU.

2.3. Larger training set augmented with synthetic data
for pre-training

For fair evaluation, training and evaluation sets should not
contain any RNA sequences that are too similar. SPOT-RNA
removes redundant sequences between its training set (7R0)
and validation/test datasets (VLO/TSO0) using the CD-HIT-
EST program (Fu et al., 2012) with 80% sequence similarity
cut-off. However, this type of filtering is also applied within
its training dataset (TR0O), which might result in loss of
valuable training data because it might be beneficial for
models to learn similar sequences which could still result in
different structures®. Instead, we construct a new training
set, bpRNA-train, by relaxing the similarity cut-off within
the training data to 99%, which expands the number of
sequences to 27,671 compared to 10,814 in TRO (details in
Appendix.B).

Additionally, a large number of sequences in bpRNA are
from only a few RNA families, so we construct a synthetic
dataset to pre-train RTfold on more diverse data. The syn-
thetic dataset consists of 65,000 randomly generated se-
quences and structure labels generated with RNAfold.

8 Analogous to how data augmentations in computer vision can
be helpful.



RTfold: RNA secondary structure prediction using deep learning with domain inductive bias

3. Experiments

We compare RTFold with three other RNA structure predic-
tion methods: RNAfold, MXfold2, and SPOT-RNA’ . RTfold
is trained on bpRNA-train and MXfold2, SPOT-RNA are
trained on TRO.

Evaluation on bpRNA 7S50

The first evaluation set is 750, as prepared in Singh et al.
(2019), and table 1 summarizes average F1-score, precision,
and recall®.

Table 1: Evaluation on bpRNA 7S0.

F1 PRECISION RECALL
RTFOLD 0.687 0.806 0.693
SPOT-RNA  0.629 0.709 0.560
MXFOLD2 0.575 0.520 0.682
RNAFOLD 0.508 0.446 0.631

RTfold outperforms the other three methods. Unlike SPOT-
RNA which only outperforms MXFold2 and RNAfold on F1-
score and precision, RTfold achieves the best performance
over all three metrics.

Evaluation on Archievell

To further evaluate the performance on an independent
dataset, we test the models on Archievell (Sloma & Math-
ews, 2016), which contains 3,188 secondary structures care-
fully curated by domain experts. Both bpRNA-train and
TRO contain sequences similar to those in Archievell, and
these redundant sequences in Archievell are removed us-
ing CD-HIT-EST with 80% similarity cutoff. The filtered
Archievell subset contains 787 sequences out of the original
3,188 sequences, and table 2 summarizes the results.

Table 2: Performance on Archievell test set

F1 PRECISION RECALL
RTFOLD 0.814 0.891 0.789
SPOT-RNA  0.608 0.572 0.680
MXFOLD2 0.643 0.634 0.675
RNAFOLD 0.517 0.495 0.566

RTfold achieves the best performance, demonstrating it can
generalize well outside bpRNA dataset. RTfold, MXfold2,
and RNAfold achieves higher F1-score on Archivell than on
TS0, which could be because bpRNA contains more noisy
data. This result could also mean that RTfold is more robust

"We ignore E2Efold due to its poor performance (Sato et al.,
2021; Fu et al., 2022). We ignore UFold because its training
data contains significant overlap with Archievell test set and this
requires retraining the model.

8Threshold for SPOT-RNA is set to 0.3 (Singh et al., 2019)

to training on a noisy dataset because of its inductive biases.
On the other hand, F1-score for SPOT-RNA is lower on
Archievell.

Ablation Studies

We perform ablation studies to demonstrate how the three
key ideas of RTfold contribute to better generalization. On
the Archievell subset, we compare RTfold with 5 setups: 1)
RTfold-1, a neural network only model, 2) RTfold-2, output
of a trained RTfold-1 processed with T, 3) RTfold-layerl,
RTfold without layer-wise recursion, 4) RTfold-layer2, RT-
fold like architecture but with 12 self-attention blocks, each
with its own trainable parameters, and 5) RTfold-TRO, RT-
fold trained only on 7R0.

Table 3: Ablation studies on Archievell test subset

F1 PRECISION RECALL
RTFOLD 0.814 0.891 0.789
RTFOLD-1 0.761 0.835 0.743
RTFOLD-2 0.792 0.915 0.761
RTFOLD-LAYER]1  0.740 0.814 0.720
RTFOLD-LAYER2 0.789 0.830 0.794
RTFOLD-TRO 0.661 0.764 0.652

RTfold achieves higher F1-score than RTfold-2 even though
they both used 7, demonstrating the benefit of the end-
to-end training. RTfold-layerl has the same number of
parameters as RTfold but lower performance without the
layer-wise recursion. RTfold-layer2, with the same depth as
RTfold but significantly more parameters, is outperformed
by RTfold, demonstrating how layer-wise recursion can
improve the expressiveness without additional parameters.
RTfold-TRO achieves the worst performance without the
improved training set and pre-training.

4. Conclusion and Discussions

In this work, we proposed a new framework, RTfold, for
predicting RNA secondary structure. RTfold achieves the
best performance on our evaluation sets, by taking advantage
of: 1) end-to-end training with constrained optimization,
which is a general approach that can be applied to many
other structured prediction problems, 2) recurrent inductive
bias, and 3) larger training set and pre-training on synthetic
data. These improvements contribute to the performance, as
demonstrated in the ablation studies. Additionally, RTfold
is one of the first to move beyond the fully convolutional
paradigm of the previous deep learning approaches.

Future work includes more comprehensive evaluation and
comparisons, and more detailed analysis of RTfold. Our
ablation study shows the importance of larger, good quality
training set, so more efforts will also be made to construct
even more diverse and informative training data.
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A. Analysis of E2Efold predictions

We investigate how well the RNA secondary structure constraints are satisfied in the output of E2Efold. Unrolling its
primal-dual method until convergence can result in arbitrarily long computational graph. Instead, E2Efold restricts the
number of iterations by a hyper-parameter 7', but this means the structural constraints are not guaranteed to be satisfied.

We run E2Efold on Archivell dataset using the trained model parameter supplied by the authors (https://github.
com/mldbio/e2efold). On 739 out of 3,911 samples in the dataset, E2Efold violated the RNA secondary structure
constraints. All of the violated constraints are constraint 3, which restricts each base to have at most a single pair. This
is expected as constraints 1 and 2 can trivially be satisfied with masking. Figure 2 shows some examples of the predicted
base-pairing matrices.

B. bpRNA-train dataset

We motivate our proposed bpRNA-train training set by first describing the construction and limitations of bpRNA-TRO
training set.

bpRNA-TRO consist of 10,814 RNA structures from bpRNA-Im (Danaee et al., 2018) and it is used to train SPOT-RNA and
MXfold. bpRNA-Im has 102,318 structures aggregated from seven RNA structure datasets and many of the RNA sequences
for these structures are highly similar. To filter out redundant sequences, CD-HIT-EST program (Fu et al., 2012) with 80%
or higher sequence similarity cutoff is used. Then, the remaining sequences are randomly split into training (7R0), validation
(VLO), and testing (7'SO) subsets.

In order to properly evaluate how well the trained models generalize, it is important that training set (e.g. TR0) do not contain
any samples similar to the ones in evaluation sets (e.g. VL0, TS0). Removing redundant sequences between the two can be
achieved by running a sequence alignment program and filtering out sequences above a similarity score threshold. However,
when this is applied on training set, valuable data might be discarded because: 1) sometimes similar sequences have very
different structures, and 2) similar sequences have subtle differences in structures which might provide valuable information
during training. For instance, when clustering similar sequences using CD-HIT-EST using the 80% similarity cut-off, we
often observe clusters with very distinct structures, like shown in Figure 3 (the left three vs. right two). Even for similar
structures, it might be important to train deep learning model on how differences in sequences result in subtle changes in
structures, which essentially acts like data augmentation commonly used in training deep learning models. Additionally,
structures in bpRNA-1m are considered to be noisy as many of them are obtained through comparative sequence analysis, so
without any knowledge on which one being the closest to the true structures, it might be best to keep all of them.

To mitigate the aforementioned problem, we construct a new training set, which we call bpRNA-train, by relaxing the
similarity cut-offs to 99%. In this work, we keep the same VLO and TSO for the validation and testing to carry out fair
comparison to the existing methods. To ensure no sequences in the new training set is similar to ones in the evaluation
sets, we use CD-HIT-EST to filter out sequences with 80% or more similarity to sequences in VLO and TSO. Then, we use
CD-HIT-EST on the remaining set with 99% similarity threshold. With the relaxed threshold, a few clusters of many similar
sequences can heavily bias the dataset: roughly a quarter of the sequences in the dataset come from one percent of clusters.
Thus, we limit the size of each cluster to 10. The resulting bpRNA-train consists of 27,671 sequences.
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Figure 2: Examples of E2Efold predictions on Archievell violating the structural constraints.
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Figure 3: An example cluster of similar sequences, obtained by running CD-HIT-EST with 80% similarity cut-off.



