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Abstract

Single-cell reference atlases are large-scale, cell-
level maps that capture cellular heterogeneity
within an organ using single cell genomics. Given
their size and cellular diversity, these atlases serve
as high-quality training data for the transfer of cell
type labels to new datasets. Such label transfer,
however, must be robust to domain shifts in gene
expression due to measurement technique, lab
specifics and more general batch effects. This re-
quires methods that provide uncertainty estimates
on the cell type predictions to ensure correct in-
terpretation. Here, for the first time, we introduce
uncertainty quantification methods for cell type
classification on single-cell reference atlases. We
benchmark four model classes and show that cur-
rently used models lack calibration, robustness,
and actionable uncertainty scores. Furthermore,
we demonstrate how models that quantify uncer-
tainty are better suited to detect unseen cell types
in the setting of atlas-level cell type transfer.

1. Introduction

Single-cell genomics enables the characterization of cellular
states at unprecedented scale and resolution. This has led
to the generation of diverse single-cell RNA sequencing
(scRNA-seq) datasets that capture cellular heterogeneity at
the tissue and organ level. To combine multiple studies into
a single representation of a human organ, consortia such as
the Human Cell Atlas (Regev et al., 2017) are leading the
generation of integrated scRNA-seq atlases. Such atlases
are built by integrating multiple datasets across samples,
individuals, and technologies, and are deemed to compre-
hensively capture cellular variation in the given tissue or
organ. Recently, the first such comprehensive representation
of the human lung was introduced in the Human Lung Cell
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Atlas (HLCA) (Sikkema et al., 2022).

Next to their potential for discovery, integrated atlases can
rapidly accelerate the analysis of new datasets in a har-
monised way. Most notably, this is achieved by transferring
cell type labels from the reference atlas to new, unannotated
data from the same tissue. This task relies on cell type clas-
sifiers which are trained on the latent representation and
expert cell labels of the integrated atlas. In order to analyze
a new dataset, one “projects” the query data to the refer-
ence’s latent space and applies the classifiers to infer cell
type labels. The encoding of the query data is based on
heavily regularized batch effect correction approaches to
match the reference and is therefore not guaranteed to align
perfectly (Lotfollahi et al., 2021). Note that the resulting
misalignment naturally becomes greater when the projected
data is comprised of samples from a different biological
condition, e.g., disease or development, or contains unseen
cell states.

The scenarios described above result in variable degrees
of dataset “shifts”, complicating the transfer of cell type
labels. In addition, it is paramount to distinguish shifted
latent representations due to unresolved technical batch ef-
fects from shifts due to biological differences between the
datasets, e.g., new cell types or disease-related cell states.
Such a distinction can be accomplished with a classifier that
provides a measure of uncertainty, which yields actionable
insights for downstream tasks.

In machine learning research data shifts, and how classifiers
can overcome them, have been widely studied in uncertainty
quantification (Gal, 2016; Gawlikowski et al., 2021). Cru-
cially, model predictions should be reliable, i.e. calibrated,
as they are used by data analysts to draw key interpretations
from the data which influence further downstream analyses.
Cell type classifiers should maintain these properties across
dataset shifts while remaining sensitive to subtle biologi-
cally driven shifts in gene expression. Finally, they should
be transparent to the analyst, by providing an accurate mea-
sure of confidence on the prediction task.

In this work, we evaluate uncertainty quantification methods
for atlas-level cell type transfer. We find that models that
quantify uncertainty are more robust, better calibrated, and
provide high quality uncertainty measures that enable them
to identify unseen cell types in the projected data.
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2. Modelling and evaluation of uncertainty

2.1. Dataset and model choice

The HLCA dataset, on which all evaluations are performed,
consists of a core of 14 datasets including 166 scRNA-seq
healthy tissue samples of the human respiratory system from
107 individuals (Sikkema et al., 2022), see Figure 7 in ap-
pendix A for UMAPs. Batch effects between datasets were
removed using scANVI with dataset as the batch covari-
ate (Xu et al., 2021). All cells in the integrated atlas were
re-annotated using iterative clustering, data-driven marker
gene detection, and a consensus manual annotation from
6 lung experts, leading to 58 consensus cell type labels
(Sikkema et al., 2022). The resulting training data consists
of ⇠580 000 cells where each cell is represented by a 30
dimensional embedding and has a unique cell type.

As we focus on the models’ ability to provide uncertainty
estimates, we consider two baseline models as well as two
state-of-the-art classifiers:

• Weighted K-nearest neighbor (WKNN) classifier
which is used in the scArches method (Lotfollahi et al.,
2021) and in the HLCA (Sikkema et al., 2022).

• Random Forest (RF) classifier from scikit-learn (Pe-
dregosa et al., 2012).

• Deep kernel learning with spectral normalized residual
network classifier (DKL) (van Amersfoort et al., 2021;
Wilson et al., 2015)

• Multi-input multi-output classifier (MIMO) (Havasi
et al., 2020), with 3 or 8 subnetworks.

Note that we evaluate the models’ uncertainty only on the
latent embedding and do not have access to the network
used for data integration. This makes methods like scANVI
(Xu et al., 2021) for uncertainty prediction inapplicable.

Uncertainty estimates can be divided into predictive, model,
and data uncertainty (Gal, 2016; Gawlikowski et al., 2021).
Data uncertainty entails label and measurement noise that
is inherent to the data, while model uncertainty measures
the uncertainty of the model’s predictions due to param-
eter uncertainty. An application of model uncertainty is
OOD detection, because it is higher for OOD cells than
for ambiguous ID cells, which both have high predictive
uncertainty. The uncertainties are calculated using:

H [y|x,D]| {z }
predictive

= I [y,!|x,D]| {z }
model

+Ep(!|D)[H[y|x,!]]
| {z }

data

,

where H is the entropy and I the mutual information, (x, y)
the embedding and cell type of the cell, D the training data
and Ep(!|D) the expectation over the posterior (Smith &

Gal, 2018). The uncertainties reported throughout this work
have been scaled to [0, 1].

In the context of label transfer from reference datasets, data
uncertainty would apply to transitioning cell states which
cannot be associated clearly with a single cell type. In con-
trast, model uncertainty highlights how familiar the model
is with cells similar to the provided query cell, that is, in an
ideal scenario, the model knows when it does not know.

DKL and MIMO belong to the class of single forward pass
uncertainty estimation models which we chose for their com-
putational efficiency and performance. Other model classes
that perform uncertainty estimation include: Bayesian Neu-
ral Networks (Blundell et al., 2015), Bayesian Dropout
(Gal & Ghahramani, 2015), or Ensemble models (Lakshmi-
narayanan et al., 2016), but they are not further considered
here.

We performed hyperparameter optimisation for all model
classes across ⇠100 distinct parameter combinations. Fur-
thermore, all reported metrics are computed from model
fits across three test sets evaluated on three different train-
validation splits, resulting in 9 unique train-validation-test
splits.

2.2. Evaluation setup

As we are interested in both the evaluation of cell type
transfer and the ability to provide meaningful uncertainty
scores, the evaluation is divided in two parts.

In section 3.1, we evaluate all models in terms of their bal-
anced accuracy, F1-score and expected calibration error
(ECE) (Guo et al., 2017). The leave-out set is a dataset
integrated in the HLCA but not used during classifier train-
ing. Next to the predictive performance, we analyse the
calibration of the classifiers. Calibration considers the rela-
tion between the frequency of correct predictions and the
binned prediction probability and, therefore, indicates how
reliable a classifier is. A well calibrated classifier will be
correct 7 out of 10 times when providing a confidence score
of 0.7. For calibration evaluation we report both ECE and
calibration curves.

In section 3.2, we test the models’ ability to quantify uncer-
tainty for several out-of-distribution (OOD) scenarios and
their ability to discriminate between in-distribution training
data (ID) and OOD data. To evaluate the models’ uncer-
tainty quality, we exclude three cell types during training
and assess their performance through the predictive and
model uncertainty. We evaluate OOD data discrimination
using the Wasserstein distance (Krishnan & Tickoo, 2020)
as well as the area under the precision-recall curve (AUPR).



Uncertainty Quantification for Atlas-Level Cell Type Transfer

Figure 1. Accuracy (") against ECE (#) (left) and F1 score (") against ECE (#) (right) across all model classes. Each point represents the
mean of three runs of nested cross-validation. The standard deviation is not reported as it is < .002 and does not affect the interpretation
of the results.

Figure 2. Fraction of positive predictions against the binned mean predicted probability across five bins for all five model classes. Each
point represents the mean of three runs of nested cross-validation. The shaded area is the standard deviation.

3. Results

3.1. Label transfer and calibration

We first evaluate the models on their ability to classify cell
types on the integrated HLCA dataset using the most fine-
grained cell type annotation (58 cell types in total). In
a typical use case a new, leave-out dataset introduces a
data-shift due to differences in experimental design, sample
handling, and cell type composition. We use a random train-
test split in this analysis to serve as upper bounds on the
performance.

We find that all models have comparable accuracy and F1-
scores (Figure 1) on the test set. In contrast, the baseline
models perform worse on the leave-out dataset, while DKL
and MIMO are able to maintain their good performance.
These results show that DKL and MIMO are superior in cell
type classification to RF and WKNN.

The same is also reflected in the models’ calibration, where
the ECE for MIMO and DKL is consistently lower (better)
compared to the baseline models. The calibration curves
in Figure 2 provide a more detailed view on calibration by
showing the models’ calibration at different confidence lev-
els. It can be seen that WKNN and RF are further away
from perfect calibration in the test set than DKL and MIMO.
Interestingly, the decline in performance on the leave-out
dataset leads to an improved calibration of WKNN, mak-
ing it comparable to models that quantify uncertainty for
the leave-out scenario. Nevertheless, this calibration plot,

together with the ECE, should be seen in light of model
accuracy, since a model should be robust not only in terms
of calibration, but also accuracy under data shifts. We report
exact scores in Tables 2,3 in the appendix A.

Overall, this analysis indicates that models that quantify
uncertainty, such as DKL and MIMO, are better suited for
the cell type transfer task. They achieve comparable per-
formance in terms of accuracy for both test and leave-out
set, while also showing superior calibration compared to the
WKNN and RF models.

3.2. Uncertainty quantification on unseen cell types

To evaluate the models’ ability to detect unseen cell types,
we left out three cell types—B cells, Mast cells, and
Ionocytes— from the training data and compute the pre-
dictive uncertainty for all classes seen during training, as
well as the left out class. A classifier trained on K classes
should result in high entropy of the output for the unseen,
K + 1 class.

Figure 3 reports predictive uncertainty for B cells for all
model types (see Figure 4 in appendix A for additional cell
types). DKL clearly identifies B cells as a new, unseen
cell type which is shown through the high uncertainty score
for the respective observations. In contrast, predictive un-
certainty for WKNN is diffused and does not highlight B
cells. Consequently, WKNN’s uncertainty estimates can be
identified as less reliable which may cause incorrect cell
type transfer. We quantitatively evaluate the densities of the
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Figure 3. Predictive uncertainty on a subset of the HLCA UMAP with B cells left out during classifier training. It can be observed that the
MIMO and DKL models predict higher uncertainty for the B cells. RF results are not reported due to poor classification accuracy.

Table 1. Area under the precision-recall curve (AUPR) for classification between OOD (unseen cell type) and ID (validation set sampled
from reference atlas), using different models and uncertainty types. DKL and MIMO outperform WKNN which is the baseline used in the
HLCA. Softmax confidence uses the probability of the predicted class as a measure of uncertainty.

MODEL UNCERTAINTY TYPE
AUPR (POSITIVE CLASS: LEFT OUT CELLTYPE)
B CELLS IONOCYTES MAST CELLS

DKL
PREDICTIVE 0.929 ± 0.026 0.940 ± 0.017 0.948± 0.009
MODEL 0.824± 0.051 0.717± 0.202 0.793± 0.011

MIMO8
PREDICTIVE 0.911± 0.009 0.677± 0.108 0.943± 0.024
MODEL 0.928± 0.005 0.823± 0.058 0.964 ± 0.010

WKNN
PREDICTIVE 0.605± 0.020 0.236± 0.006 0.825± 0.013
SOFTMAX CONFIDENCE 0.510± 0.014 0.121± 0.008 0.707± 0.016

predictive uncertainty for seen and unseen cell types via the
Wasserstein distance, cf. (Krishnan & Tickoo, 2020), see
Figure 5 in appendix A, from which the same conclusions
can be drawn.

Finally, we formulate the task of detecting a new cell type
as a binary classification problem and quantify the perfor-
mance through the AUPR. The results are shown in Table 1.
Each entry is the AUPR of a model when the given uncer-
tainty type is used for classification. MIMO8 performs best
using model uncertainty for all left out cell types. DKL
on the other hand has higher AUPR using predictive uncer-
tainty. Since model uncertainty should be better suited for
OOD detection, this suggests that MIMO8 exhibits better
disentanglement of model and data uncertainty. DKL’s issue
to highlight OOD cells using model uncertainty can also be
observed in Figure 6 in appendix A. Nonetheless, DKL has
higher AUPR than MIMO8 for B cells and Ionocytes using
predictive uncertainty. When using predictive uncertainty
for DKL and model uncertainty for MIMO, both models
outperform the WKNN baseline across cell types.

These results indicate that models that quantify uncertainty
are superior in detecting unseen cell types, since they pro-
duce higher uncertainty on the left out classes. This is a
desirable property of the models as it can be used by ana-
lysts to discover new cell states which are not present in the
integrated scRNA-seq reference atlas.

This analysis requires further investigation and should be
carried out on a real OOD scenario, i.e., where a new dataset
is projected onto the reference and also excluded form the
classifier’s optimisation. Nonetheless, one has to appreciate

that neither of the baseline models, RF and WKNN, provides
such a measure on model uncertainty, and, therefore, an
evaluation of models’ prediction confidence is not possible.
Put differently, it is not possible to state the model doesn’t
know when it doesn’t know. In contrast, models like DKL
and MIMO, that provide measures on both data and model
uncertainty, should be preferred for building and extending
integrated scRNA-seq reference atlases.

4. Conclusion

In this work, we presented uncertainty quantification on cell
type transfer for single-cell reference atlases. We evaluated
the considered models on a variety of metrics, including per-
formance, calibration, and uncertainty quantification. We
demonstrate that the baseline methods are not well cali-
brated and lack desirable robustness. In contrast, models
that quantify uncertainty provide better confidence and more
sensible uncertainty scores, which provide actionable results
for downstream interpretations. In fact, such uncertainty
measures can be used by analysts to uncover new cell types
and cell states not present in the reference integrated atlas,
as well as retain a notion on the “confidence” of the pre-
diction, so that more careful conclusions can be drawn. In
the future, we seek to extend this benchmark by including
real-world query-to-reference mapping as well provide a
more extensive evaluation on model and data uncertainty
under dataset shifts.
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A. Appendix

Table 2. Test set classification accuracy, F1 score and ECE

ACCURACY (") F1 SCORE (") ECE (#)

DKL 0.969 0.977 0.003
MIMO3 0.964 0.972 0.003
MIMO8 0.958 0.969 0.008
RF 0.920 0.955 0.096
WKNN 0.964 0.979 0.038

Table 3. Leave-out set classification accuracy, F1 score and ECE

ACCURACY (") F1 SCORE (") ECE (#)

DKL 0.947 0.945 0.014
MIMO3 0.943 0.929 0.005
MIMO8 0.936 0.920 0.004
RF 0.879 0.817 0.130
WKNN 0.931 0.849 0.021

Figure 4. Predictive uncertainty for all models on left out cell types (rightmost panels).
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Figure 5. Distribution of predictive uncertainty for the cell types the model was trained on (blue) and the left out cell type (orange). The
computed Wasserstein distance, WD, (") between both distributions is shown in the title. This quantifies the models’ ability to distinguish
the OOD cell type from the ID training data. All models outperform the WKNN baseline. While RF shows the largest WD, using this
model cannot be recommended due to poor performance in classification accuracy.

Figure 6. Model uncertainty for MIMO and DKL on left out cell types (rightmost panels).
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Figure 7. Human Lung Cell Atlas UMAPs colored by cell types (top) and leave-out dataset (bottom).


