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Abstract
Peptide molecules have long been viewed as
promising candidates for design of novel therapeu-
tics, and are likely to benefit from ML-guided ap-
proaches. However, learning to predict biological
properties of peptides often suffers from a scarcity
of labelled training data. We demonstrate mass
spectrometry, which provides high-throughput,
multidimensional biophysical measurements of
peptides, can be used to learn effective representa-
tions for peptide property prediction. Specifically,
our pretext task asks to identify masked residues
of a peptide sequence using its mass spectrum.
This yields an encoder that we can then apply to
any peptide sequence, irrespective of whether we
have spectra for it. Our approach is competitive
with a state-of-the-art evolutionary pretext task
on a number of downstream tasks, and requires
orders of magnitude fewer pretraining examples.

1. Introduction
The functional diversity and ease of synthesis of peptide
molecules makes them attractive candidates for drug de-
velopment (Fosgerau & Hoffmann, 2015). However, an
exponentially-large search space and often-difficult exper-
imental protocols make it challenging to design peptides
with specific properties via traditional laboratory techniques.
Machine learning methods promise to fill this gap (Chen
et al., 2021; Wan et al., 2022; Schissel et al., 2020): given a
surrogate model mapping sequence to biological function,
we can screen large numbers of peptides in-silico and prior-
itize candidates for experimental followup. Unfortunately,
many property prediction tasks of therapeutic relevance suf-
fer from a scarcity of labelled sequences (Chen et al., 2021).
This calls for schemes such as multi-task learning (Qi et al.,
2012), active learning-guided experimental design (Yang
et al., 2019), or self-supervised pretraining from unlabelled
protein sequences (Rives et al., 2021; Yang et al., 2022).
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The state-of-the-art in pretraining for amino acid sequences
applies the masked language modelling task introduced by
Devlin et al. (2018) to large protein databases: a subset of
the residues in a protein sequence are masked, and the model
is asked to predict these from the rest. The pretraining signal
here is evolutionary: protein sequences are not random, but
rather arise through natural selection to maximize fitness.
The masking pretext can therefore be interpreted as predict-
ing which residue(s) would maximize biological activity of
the protein encoded by the sequence.

While evolutionary pretraining enjoys a biologically plau-
sible objective for protein sequences, typically hundreds
of amino acids long, it may not be optimal for peptides,
which are at most tens of amino acids long, and are not usu-
ally evolutionarily selected for function in isolation from a
larger protein. This precludes training a similar masking pre-
text on peptide-length sequences without additional context,
as they lack sufficient information to identify the masked
residue. Learning to extract this additional context from
proteins incurs a high computational cost, requiring tens to
hundreds of millions of long sequences (Yang et al., 2022;
Rives et al., 2021). We resolve these issues by incorporat-
ing an information-rich, plentiful – yet to our knowledge,
previously-unexploited – data modality for pretraining of
peptide property prediction tasks: mass spectrometry.

A typical proteomics experiment produces mass spectra
of tens of thousands of peptides (Steen & Mann, 2004).
Following algorithmic annotation, each spectrum represents
a histogram of ions formed by fragmentation of an ionized
peptide, which describes the propensity of the peptide to
cleave at each bond along the backbone. This depends
on a number of related physical properties, including the
identities of the amino acids, the distribution of charge along
the sidechains and backbone (Paizs & Suhai, 2005), and the
peptide’s secondary structure (Tsaprailis et al., 1999). All
these properties are also central to biological activities – and,
we conjecture, are more directly captured by the biophysical
signals measured in mass spectrometry.

In short, this work makes the following contributions:

• We identify mass spectrometry as a modality capturing
information relevant to peptide property prediction;

• We develop a pretext task that uses mass spectra to
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guide learning of a representation that can be used for
peptide sequences directly, and is hence applicable to
peptides that lack spectra; and

• We show that representations learned with this pretext
task are competitive with evolutionary pretraining on a
number of peptide property prediction tasks, using far
fewer pretraining examples.

2. Related work
There is substantial recent interest in evolutionary learning
of protein representations using large language models, pri-
marily transformers (Rives et al., 2021; Elnaggar et al., 2021;
Rao et al., 2019), but also convolutional neural networks
(Yang et al., 2022). These have recently been applied to
peptide property prediction (Dee, 2022). Others pretrain for
protein tasks by predicting other modalities from sequence,
including 3D structure (Bepler & Berger, 2019; Zhang et al.,
2022a) and functional annotations (Zhang et al., 2022b); but
to our knowledge, mass spectrometry has not yet been used
for this purpose. We also draw inspiration from successful
application of deep learning for NLP to other tasks in mass
spectrometry, including predicting spectra from sequence
(Zhou et al., 2017; Gessulat et al., 2019) and sequence from
spectra (Yilmaz et al., 2022; Qiao et al., 2021).

3. Methods
3.1. Pretext task

Our objective is similar to the masked language model in
(Yang et al., 2022) and (Rives et al., 2021), in which we ran-
domly mask a single residue from the peptide sequence and
require our model to correctly impute it.1 However, short
peptide sequences alone do not provide sufficient context for
this task. We therefore additionally condition on the entire
observed mass spectrum in addition to the remainder of the
sequence; which, as we later show, does contain sufficient
information to identify the masked amino acid. By returning
an intermediate representation of the peptide sequence prior
to when it is merged with the spectrum, we can then apply
the resulting model to any peptide sequence – not just those
for which we have spectra.

3.2. Model architecture

Our architecture, shown in Figure 1, comprises two paired
encoders: one for the sequence modality, and one for the
spectrum modality. The sequence encoder follows the same

1We initially tried a simpler pretext of predicting spectra from
sequence: using only a sequence encoder, and yielding a logit
per ion type instead of per amino acid in Figure 1. While this
performed well on the pretext (mean test R2 = 0.93), we found it
less effective on downstream tasks than our masking objective.

architecture as the CARP model described in (Yang et al.,
2022); briefly, it converts each amino acid symbol to an
8-dimensional embedding vector, and then passes this se-
quence of embeddings through a ByteNet dilated CNN as
developed in (Kalchbrenner et al., 2016), which yields a
sequence-length encoding at its output.

We represent a mass spectrum of a length-L peptide as an
(L−1)×K-dimensional table of probabilities of each of K
ion types arising from cleavage of L− 1 bonds, which we
compute by normalizing the observed counts across anno-
tated peaks to sum to 1. We also concatenate at each bond
two scalar-valued properties of the spectrum as a whole: its
observed electric charge prior to fragmentation, and the col-
lision energy at which it was measured. This is passed into
another ByteNet encoder, yielding at its output one embed-
ding vector per bond. The outputs of the two encoders are
concatenated feature-wise (padding the bond encodings to
length L) and passed into a 2-layer ReLU classifier applied
independently at each position, yielding a vector of logits
per each of t amino acids. We then index into the prediction
at the masked token and minimize cross-entropy loss against
the true residue.

For both encoders we use the same depth and width
as the smallest pretrained model in (Yang et al., 2022),
CARP-600k, which uses n = 16 layers of d = 128-
dimensional ByteNet blocks. We train using minibatches
of 512 peptide-spectrum pairs with Adam (Kingma & Ba,
2014) (learning rate = 5× 10−4), early-stopping on valida-
tion cross-entropy after 126 epochs.

Figure 1. Our model’s architecture. We return the L× d output of
the sequence encoder as our embeddings. See Yang et al. (2022)
for a more in-depth exposition of the ByteNet architecture.
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3.3. Pretext dataset

We use a library of mass spectra generated in Part I of the
ProteomeTools project (Zolg et al., 2017). This comprises
2,980,009 annotated mass spectra of 391,273 unique pep-
tides derived from the human proteome, composed of the 20
canonical amino acids plus two post-translational modifica-
tions (methionine sulfoxide and carbamidomethyl-cysteine).
The redundancy per peptide arises through different com-
binations of charge states, collision energies, and modifica-
tions, each of which generally yield distinct spectra. These
spectra are provided as lists of (mass, intensity) tuples, each
of which is annotated with the bond and one of K possi-
ble types of the respective fragment. We use an 85/5/10
train/validation/test split; to avoid leakage, we cluster se-
quences using CD-HIT (Fu et al., 2012) (threshold 0.5, word
length 3) and randomly assign entire clusters to each split.

3.4. Peptide property prediction datasets

We identified a number of datasets of peptide sequences,
labelled either positive or negative for some biological prop-
erty, as representative of potential objectives for peptide
design. Where applicable, we only include sequences com-
prising the 20 canonical amino acids, with 5 ≤ L ≤ 100:

• MITOCHONDRIAL TARGETING. Zarin et al. (2021)
provide annotations of 5,348 N-terminal intrinsically-
disordered regions (IDRs) identified in a screen for
mitochondrial targeting in yeast. From these sequences
we select 160 positive and 3,960 negative examples.

• CDC28 BINDING. Zarin et al. (2021) also indicate
whether the same IDRs are substrates of the kinase
Cdc28: this gives 80 positive examples and 4040 nega-
tive examples.

• SIGNAL PEPTIDE. SignalP (Teufel et al., 2022) is a
high-quality repository of annotated signal peptide se-
quences derived from eukaryotes and prokaryotes. For
simplicity we consider only the SignalP 6.0 training
set and ignore type annotations for the prokaryotic se-
quences, resulting in a binary classification problem of
15,625 positives against 4,665 negatives.

• MHC BINDING. The Dana-Farber Repository for
Machine Learning in Immunology (Zhang et al.,
2011) provides peptide sequences that bind a num-
ber of human and mouse MHC-II complexes. We
construct as our positive class the unique ‘binding’
peptide sequences across the union of training sets
listed at http://projects.met-hilab.org/
DFRMLI/HTML/natural.php, and the union of
‘non-binding’ peptides for the negative class; discard-
ing sequences appearing in both to yield 9,720 positive
examples and 6,945 negative examples.

Within each task we carry out 3-fold nested cross-validation,
again splitting via CD-HIT clustering.

3.5. Downstream tasks

To apply our model to the downstream tasks, we discard the
spectrum encoder and final classifier, evaluate the sequence
encoder on the input peptide sequence, and learn a new
classifier on the resulting embeddings. Because the encoder
yields a sequence-length representation, our classifier pools
across positions via an attention layer (Vaswani et al., 2017),
then applies a 2-layer ReLU binary classifier.

We compare to four baselines. (1) CARP-600k (Yang et al.,
2022) is employed as representative of the state-of-the-art
in evolutionary pretraining. This model has essentially the
same architecture as our sequence encoder – permitting di-
rect comparison of pretext tasks without confounding from
architecture – but is trained on far more data: 41.5 million
full-length protein sequences from UniRef50 (Suzek et al.,
2014). (2) We also include our model initialized from ran-
dom without pretraining. Finally, we use two simple models:
(3) a length-averaged prediction of a linear classifier applied
individually to each amino acid; and (4) a 3-layer, 128-
wide CNN with ReLU activations, kernel width of 5, and
length-wise average-pooling, prior to a linear output layer.

For pretrained models, we test both freezing the encoder
weights and training only the final classifier, and fine-tuning
the entire network. All models use Adam (batch size 256,
learning rate 5× 10−4), early-stopping on validation AUC.

4. Results and Discussion
4.1. Pretext accuracy

Our method identifies randomly-masked amino acids with
69.9% accuracy on the test set. In comparison, evaluating
the pretrained evolutionary model on peptide sequences
achieves only 10.4% accuracy: this is unsurprising, as the
global protein context on which it depends is missing. To
confirm the spectral information is actually used, we also
tried solving our pretext using the sequence alone: this
peaked at a maximal validation accuracy of 18% and then
proceeded to overfit, indicating masking alone is insufficient
for peptides and spectra are indeed necessary.

Figure 2 shows a per-amino-acid confusion matrix. Reassur-
ingly, errors tend to be structurally-similar amino acids: in
particular the branched-chain amino acids (I = isoleucine, L
= leucine, V = valine) and two of the three aromatic amino
acids (F = phenylalanine, Y = tyrosine). We also see me-
thionine (M) and its modified form (m) are not frequently
confused. This suggests a potential blind spot of evolu-
tionary pretraining, which does not separately represent
modified and unmodified amino acids.

http://projects.met-hilab.org/DFRMLI/HTML/natural.php
http://projects.met-hilab.org/DFRMLI/HTML/natural.php
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Figure 2. Confusion matrix for the pretext task between masked
(rows) and predicted (columns) amino acids. Color indicates
P (column | row). Entries > 0.05 are labelled.

4.2. Interpretation of embeddings

We embed each sequence in our test set, average-pool length-
wise, and visualize the result via UMAP (McInnes et al.,
2018) in Figure 3. This indicates our sequence representa-
tion captures known determinants of peptide fragmentation.
Length dependence is apparent, as is clustering according
to: the number of basic amino acids, which determines the
maximum charge a peptide can carry and where it localizes
(Paizs & Suhai, 2005); the presence of proline (P), which
bends the peptide (Vaisar & Urban, 1996); and the identity
of the C-terminal amino acid, which reflects a selection bias
from using trypsin to digest proteins into peptides.

Figure 3. UMAP visualization of peptide embeddings, colored
according to properties known to influence fragmentation.

4.3. Downstream performance

Test AUC of our model and the baselines for the four tasks
considered are shown in Table 1. On the CDC28 BIND-
ING and SIGNAL PEPTIDE tasks, a model pretrained on

mass spectrometry is competitive with the state-of-the-art
evolutionary approach. Our approach also outperforms state-
of-the-art on MITOCHONDRIAL TARGETING. We suggest
this is due to our choice of data: mass spectral peak in-
tensities are substantially determined by the distribution
of electric charge within the peptide, which is also known
to determine mitochondrial targeting (Zarin et al., 2021).
However, our approach fares poorly on MHC BINDING; the
lower performance overall on that task may have resulted
from our decision to pool sequences across different MHC
complexes.

The evolutionary pretext, trained on proteins, proves ef-
fective for peptides. This might be due to the ByteNet
architecture, whose first few layers of convolutional filters
necessarily detect peptide-sized features. But this evolution-
ary pretext also benefits from a much larger corpus than our
peptide task: CARP-600k is trained on about 100× more
sequences than our model, each much longer than a peptide.

Model Mito Cdc28 SignalP MHC
CARP-600k FR 0.87 0.73 0.99 0.72

FT 0.86 0.78 0.99 0.73
Linear 0.86 0.56 0.82 0.67

3-layer CNN 0.85 0.71 0.92 0.75
Random init. FR 0.85 0.71 0.99 0.72

FT 0.83 0.74 0.94 0.68
MS pretrained FR 0.89 0.78 0.97 0.70

FT 0.89 0.71 0.99 0.72

Table 1. Averaged 3-fold test AUC on downstream tasks, for:
CARP-600K (SOTA); linear and CNN baselines; our model, ini-
talized from random; and pretraining on the MS pretext. ‘FR’ only
trains the final classifier; ‘FT’ additionally trains the encoder.

5. Conclusion
Here we show existing published mass spectrometry data
can be used to derive representations for peptide property
prediction that are competitive with a state-of-the-art evo-
lutionary pretext, while using far fewer sequences. Evolu-
tionary and mass-spectral pretraining need not be mutually
exclusive: both enjoy plentiful data and may offer com-
plementary views of peptide and protein structure – partic-
ularly for modified amino acids, which are not explicitly
represented in evolutionary data, yet strongly influence pro-
tein structure and function (Mann & Jensen, 2003) and
are represented with greater diversity in other Proteome-
Tools releases (Zolg et al., 2018). Integration of these two
modalities is a promising avenue for further exploration,
especially for peptide design tasks in which modifications
or peptidomimetics (Gatto et al., 2021) are included in the
sequence search space.
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