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Abstract
Single-cell multimodal profiling provides a high-
resolution view of cellular information. Recently,
multimodal profiling approaches have been cou-
pled with CRISPR technologies to perform pooled
screens of single or combinatorial perturbations.
This opens the possibility of exploring the massive
space of combinatorial perturbations and their reg-
ulatory effects computationally from the extrapo-
lation of a few experimentally feasible combina-
tions. Here, we propose MultiCPA, an end-to-end
generative architecture to predict multimodal per-
turbation response at single cell level. Two mix-
ing strategies to integrate multiple modalities are
introduced and compared with existing methods.
MultiCPA was also shown to accurately predict
unseen combinatorial perturbation responses for
multiple modalities. The code to reproduce the
results is available on GitHub, theislab/multicpa.

1. Introduction
Single-cell multiomics (Teichmann & Efremova, 2020)
datasets are routinely generated to capture the cellular het-
erogeneity (Stephenson et al., 2021; Yao et al., 2021) with
higher resolution through simultaneous quantification of
transcriptome and surface proteins in the same cell (Stoeck-
ius et al., 2017). Recently, multimodal technologies have
been combined with CRISPR-compatible cellular indexing
of transcriptomes and epitopes to profile cells under single
(Mimitou et al., 2019; Frangieh et al., 2021) or combinatori-
al (Wessels et al., 2022) genetic perturbation. However, a
comprehensive experimental investigation of combinatori-
al perturbations is challenging due to massive exploration
space of possible combinations. Thus, computational meth-
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ods are required to in silico predict cellular responses to a
perturbation to navigate the large perturbation space and
facilitate the experimental design.

Computational models based on representation learning
(Lotfollahi et al., 2019; Ji et al., 2021) have been success-
fully applied to predict gene expression response to disease
and chemical perturbation at the single-cell level. Recently,
compositional perturbation autoencoder (CPA) (Lotfollahi
et al., 2021) was proposed to predict gene expression re-
sponse to combinatorial drug or genetic perturbations. Yet,
CPA predictions are limited to a single modality, the gene ex-
pression. However, perturbation response prediction across
multiple modalities helps to obtain a more holistic view
of cellular behavior. Existing approaches such as Total
Variational Inference (totalVI) (Gayoso et al., 2021) have
been shown to efficiently model CITE-seq data by model-
ing biological and technical factors in the data. totalVI has
been applied to perform counterfactual prediction to impute
unmeasured surface proteins for single-cell RNA-seq data.
However, the model is unable predict the combinatorial
perturbation responses.

To address these challenges, we present multimodal com-
positional perturbation autoencoder, MultiCPA, an end-to-
end generative model to exploit paired measurement of
RNA and surface proteins to learn perturbation responses
across both modalities at single-cell level. We demonstrate
MultiCPA can efficiently model highly multiplexed multi-
modal CRISPR screens to predict unseen single and com-
binatorial perturbations. Furthermore, MultiCPA learns a
probabilistic representation of the data while accounting for
biological and technical factors.

2. Methods
2.1. Integrating multimodal perturbation profiles

To evaluate the relative successes of two different mixture
models, Product-of-Expert (PoE) (Lee & van der Schaar,
2021) and concatenation, two variational autoencoders
(VAEs) (Kingma & Welling, 2013) were built as shown
in Figure 1. In concatenation based model architecture,
MultiCPA (concat), joint feature vectors are constructed by
concatenating observed data from both modalities, proteins
(xP ) and genes (xG). Joint embedding, Zjoint, is sam-

https://github.com/theislab/multicpa
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Figure 1. Overview of proposed MultiCPA architectures, where
Ai denotes adversarial discriminator networks, E denotes separate
perturbation and covariate embeddings. Multimodal integration by
a) concatenation mixture module. b) PoE mixture module.

pled via the reparameterization trick (Kingma et al., 2015)
from joint posterior, q(Zjoint|xG, xP ), which is estimated
by a shared encoder from the concatenated feature vector.
The PoE mixture model architecture, MultiCPA (PoE), esti-
mates independent marginal latent distributions q(ZP |xP )
and q(ZG|xG) by the respective encoder of each modality.
Joint embedding, Zjoint, is estimated similarly from joint
posterior q(Zjoint|xG, xP ), the product of the conditional
marginal posteriors calculated using PoE framework. The
loss function of the mixture module LM,1 for MultiCPA
(concat) is given in Equation 1, while arithmetic mean of all
KL divergences is used for MultiCPA (PoE).

LM,1 = KL(N (µjoint, σjoint)||N (0, 1)). (1)

The information about perturbations and covariates in the
joint embedding is disentangled by using an adversarial net-
work as implemented in CPA framework (Lotfollahi et al.,
2021). Auxiliary cross entropy losses implemented for two
adversarial discriminator networks, which are trained to pre-
dict perturbation and cell covariates from Zjoint, forces the
encoders to produce the basal cellular state, Zbasal. The ad-
versarial loss for MultiCPA (concat) is given in Equation 2,
while the adversarial loss for MultiCPA (PoE) is defined by
the arithmetic mean of LA(ZP ), LA(ZG) and LA(Zjoint).

LA,1(Z) = CrossEntropy(A1(Z), perturbation)

LA,2(Z) = CrossEntropy(A2(Z), covariate)
(2)

Zbasal is then composed with each of perturbation and co-
variate embeddings separately in the latent space and for-
warded to the decoder networks. To reconstruct the observed
data from the latent representation of the observations, the

conditional latent space embeddings are entailed to learn
perturbations and covariates. Extracting expressions (gene
and protein), perturbations, and covariates as disentangled
embeddings in the latent space allows to predict counterfac-
tual scenarios such as unseen perturbation combinations.

2.2. Modality-specific data reconstruction

Joint latent space embedding feeds into the modality-
specific decoders trying to reconstruct the corresponding
input data. Inspired by totalVI concepts (Gayoso et al.,
2021) integrating genes and protein modalities, the decoder
network in MultiCPA architectures consists of five neural
networks. All encoders, decoders, and adversarials of both
MultiCPA models were built from fully-connected blocks.
The gene data is decoded using a single decoder to recon-
struct the observed data utilizing negative binomial loss
function (Equation 3, indices are dropped for readability),
where the distribution is specified by the mean µG and the
inverse dispersion θG.

LG = NB(x;µ, θ)

=
Γ(x+ θ)

Γ(x+ 1)Γ(θ)

(
θ

θ + µ

)θ (
µ

θ + µ

)x (3)

On the other hand, four separate decoders for background
mean µb, foreground mean µf , protein mixing πP of back-
ground and foreground, and protein dispersion θP are used
to decode protein data. Negative binomial mixture loss com-
paring the decoded protein signal components with observed
protein data was implemented to guide reconstruction pro-
cedure (Equation 4, indices are dropped for readability).
Additionally, a KL divergence term, which utilizes a pro-
tein specific prior for the background mean learned during
training, is computed.

LP = πNB(x;µb, θ) + (1− π)NB(x;µf , θ)

LM,2 = KL(N (α, β)||N (αprior, βprior))
(4)

Decoding procedure during training is very similar for both
models, except that MultiCPA (PoE) uses multiple respec-
tive latent space embedding instead. Optimization of the
models during model training process repeats two succes-
sive steps. A batch from observed data passes through en-
coder networks to compute joint embedding Zjoint, which
feeds into perturbation and covariate discriminator adver-
sarial networks. The stability of adversarial networks are
improved by the implementation of gradient penalty to pre-
vent gradients with large norm values. In the next iteration,
joint embedding Zjoint is combined with perturbation and
covariate embeddings in the latent space and then decoded
through multiple decoders. Here, the total loss for back-
propagation is given by Equation 5, where wi are model
hyperparameters.

LMultiCPA = LG + LPw1 + (LM,1 + LM,2)w2

− (LA,1 + LA,2)w3
(5)
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Figure 2. a) Prediction performances of the best models after hy-
perparameter tuning for the two MultiCPA models on test split.
b) Comparison of MultiCPA and CPA in terms of OOD split pre-
diction. c) Baseline expectation under random model behaviour.

2.3. Hyperparameter tuning and datasets

Best hyperparameters of both models were extensively
searched in a large hyperparameter space using the exper-
iment management tool sacred (Greff et al., 2017) and a
MongoDB (Gyorodi et al., 2015) experiment database on a
large computer cluster with iterative sweeps. A certain set of
hyperparameters were selected for each dataset and model
combination, which optimize the dataset-specific counterfac-
tual prediction accuracy in later analyses. Best models after
hyperparameter tuning were manually examined in terms of
reconstruction and adversarial losses in train, test and OOD
(out-of-distribution) splits for both datasets to identify any
possible overfitting issues. Two CITE-seq datasets of THP-1
human monocytic cells were used for model training and
subsequent analyses. First dataset, named as Wessels2022
(Wessels et al., 2022) has 30707 cells with 16920 genes
and 24 proteins for 28 single gene knock-out perturbations.
Second dataset, named as Papalexi2021, (Papalexi et al.,
2021) has 20729 cells with 18649 genes and 4 proteins for
26 single gene knock-out perturbations, but no double per-
turbation. The datasets were quality checked, visualized and
preprocessed using scanpy (Wolf et al., 2018). 5000 highly
variable genes (HVGs) were selected for training the mod-
els. For each perturbation in each dataset, 20 differentially
expressed (DE) genes were calculated to assess the model
performances at test time.

3. Results
3.1. Choosing the best model architecture

Two VAE architectures with alternative mixture models
were compared on the Papalexi2021 dataset. Approximately
5000 models for each of the proposed architectures were
trained on a high performance computing cluster to find best
hyperparameter combination. The best models were chosen
in terms of counterfactual perturbation prediction accuracy.
Here, coefficient of determination, R2, is determined as the
metric when comparing observed data with model predic-
tions. The results in Figure 2a show that MultiCPA model
with concatenation mixture module outperformed PoE based
model in predicting protein data (0.98 vs. 0.57), although
the reconstruction and adversarial losses were comparable.
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Figure 3. UMAP visualizations of input datasets and perturbation
embeddings. First row is for Papalexi2021, second row is for
Wessels2022 for which only single perturbations are plotted for
easier visual comparison. a, e) Input dataset UMAPs, where colors
represent division phases G1, G2M, S, from darkest to lightest.
b, f) Input dataset UMAPs, where colors represent single pertur-
bations. c, g) Perturbation embeddings UMAPs for MultiCPA.
d, h) Perturbation embeddings UMAPs for CPA.

MultiCPA (concat) was hence chosen as the best model in
terms of total accuracy in counterfactual prediction, and
MultiCPA (PoE) was omitted from subsequent analyses.

3.2. MultiCPA outperforms CPA leveraging additional
modalities

MultiCPA was compared with CPA model in terms of
the prediction accuracy on out-of-distribution (OOD) split.
Both models were thus trained with Wessels2022 dataset,
where six perturbation combinations had been completely
removed from the dataset and labelled as OOD. Figure 2b
shows that MultiCPA model predicts counterfactual gene
expression with slightly higher accuracy (0.96 ± 0.02 vs.
0.95 ± 0.02). Nevertheless, for all genes and differen-
tially expressed (DE) genes in the dataset, both CPA and
MultiCPA performed robustly (0.89±0.07 vs. 0.88±0.05).
This suggests both MultiCPA and CPA not only extract and
learn the individual effects of perturbations from train split,
but also successfully combine these information in the latent
space to predict the effect of unseen perturbation combina-
tions. Additionally, MultiCPA predicts protein data with a
very high accuracy for unseen perturbation combinations,
leading to position itself as a multimodal extension of CPA.

Perturbation latent space in both datasets was inspected
in order to assess whether perturbation embeddings could
give clues about the similarities of perturbations’ mode of
action. CPA has been previously shown to be competent
in grouping perturbations together which are associated via
cellular regulatory, metabolic or signaling pathways. It was
hypothesized that additional protein information integrated
with the MultiCPA model should result in a better resolution
and biologically more meaningful groupings in perturbation
latent space. Based on manual annotation of perturbations
considering underlying biological mechanisms, MultiCPA
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Figure 4. Counterfactual perturbation prediction performances on
test split, respectively for Wessels2022 and Papalexi2021 datasets
at each row. a, b) Prediction performances of totalVI and MultiCPA
models. c, d) Prediction performances of MultiCPA model with
noise added datasets. e, f) Prediction performances of totalVI
model with noise added datasets.

and also CPA were not able to group the perturbations in
both datasets in a consistent fashion, suggesting a dataset-
specific variation or potential issues that still need to be
accounted for (Figure 3). On the other hand, both models
could successfully extract perturbation information from the
input datasets although the datapoints of each perturbation
do not cluster together on input feature set based UMAPs.

3.3. Comparison with existing deep learning models

MultiCPA and totalVI are compared to assess their rela-
tive advantages in integration of a multimodal single-cell
datasets to make counterfactual predictions. Learning the
effect of individual perturbations from the input dataset and
combining learned information to make a counterfactual
combinational perturbation prediction is not possible using
totalVI. The comparative analysis is thus conducted on test
split only, but not OOD split. Considering each perturba-
tion as a different batch, batch transformation method of
totalVI was applied to unperturbed cells in the test set into
the perturbation of interest to obtain model predictions of
perturbation effects. Analogously, MultiCPA predictions
were made only using the unperturbed cells. It was observed
that MultiCPA compares slightly favorably to the existing
totalVI method (Figure 4a and 4b).

With the idea of testing the robustness of the model to the
noise found in the data, certain percentages of the input
features were randomly selected from a random quarter

of the perturbations in both datasets, and were replaced
with zero values. Both totalVI and MultiCPA models were
then trained with modified datasets using the same hyper-
parameters tuned for the complete datasets, and counterfac-
tual prediction accuracies were calculated as usual. totalVI
model was considerably affected by such an intervention
while MultiCPA still retains high prediction accuracies even
with the most severe scenario for Wessels2022 dataset (Fig-
ure 4). The responds to the intervention were comparable
for Papalexi2021 dataset. These results suggest that the
information of each perturbation effect could be learned
via untouched perturbations for MultiCPA but not totalVI,
which is then used in test time to predict intervened pertur-
bations in the dataset, as Wessels2022 dataset contains many
combined perturbations. However, Papalexi2021 dataset
contains only single perturbations, making it unlikely to
learn intervened perturbations for both models.

4. Discussion
Harnessing the strength of multiple modalities in extracting
the information regarding cellular effect of perturbations
helps to acquire a broader insight into perturbation effects.
Here, we showed that MultiCPA can provide a more com-
prehensive characterization of cellular phenotypes and per-
turbations in an unbiased manner through a joint multimodal
data representation and improves the prediction of unseen
perturbation combinations with higher accuracy. Moreover,
MultiCPA is the first method that learns the effect of indi-
vidual perturbations on the surface protein data and uses the
information to predict unseen perturbation combinations.

Furthermore, the proposed generative deep learning model
outperformes the existing totalVI model for multimodal
single-cell data integration with regards to overall prediction
accuracy in the test split. MultiCPA learns individual per-
turbation and covariate information from combinations and
performs more robustly than totalVI in response to the noise
in high-dimensional input data. While totalVI is not devised
to learn and combine individual perturbations, MultiCPA
exploits learned latent space embeddings to predict unseen
combinations in the training data for both modalities. Addi-
tionally, relative advantages of two mixture models has been
tested in this context, where MultiCPA (concat) was shown
to outperform MultiCPA (PoE) in terms of counterfactual
prediction accuracy of surface protein data.

We anticipate MultiCPA to guide exploration of the perturba-
tion space, leading to the development of novel therapeutics
(Brochado et al., 2018), and facilitating the discovery of the
general principles of a cellular machinery (Muscato et al.,
2022) in biological research. As future directions, we aim
to extend our model with other cellular modalities, such as
chromatin accessibility data by scATAC-seq (Lareau et al.,
2019; Lotfollahi et al., 2022) technology.



MultiCPA: Multimodal Compositional Perturbation Autoencoder

References
Brochado, A. R., Telzerow, A., Bobonis, J., Banzhaf,

M., Mateus, A., Selkrig, J., Huth, E., Bassler, S., Za-
marreño Beas, J., Zietek, M., et al. Species-specific
activity of antibacterial drug combinations. Nature, 559
(7713):259–263, 2018.

Frangieh, C. J., Melms, J. C., Thakore, P. I., Geiger-Schuller,
K. R., Ho, P., Luoma, A. M., Cleary, B., Jerby-Arnon, L.,
Malu, S., Cuoco, M. S., et al. Multimodal pooled perturb-
cite-seq screens in patient models define mechanisms of
cancer immune evasion. Nature genetics, 53(3):332–341,
2021.

Gayoso, A., Steier, Z., Lopez, R., Regier, J., Nazor, K. L.,
Streets, A., and Yosef, N. Joint probabilistic modeling of
single-cell multi-omic data with totalvi. Nature methods,
18(3):272–282, 2021.

Greff, K., Klein, A., Chovanec, M., Hutter, F., and Schmid-
huber, J. The sacred infrastructure for computational
research. In Proceedings of the 16th python in science
conference, volume 28, pp. 49–56, 2017.

Gyorodi, C., Gyorodi, R., Pecherle, G., and Olah, A. A
comparative study: Mongodb vs. mysql. In 2015 13th
International Conference on Engineering of Modern Elec-
tric Systems (EMES), pp. 1–6. IEEE, 2015.

Ji, Y., Lotfollahi, M., Wolf, F. A., and Theis, F. J. Ma-
chine learning for perturbational single-cell omics. Cell
Systems, 12(6):522–537, 2021.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Kingma, D. P., Salimans, T., and Welling, M. Variational
dropout and the local reparameterization trick. Advances
in neural information processing systems, 28, 2015.

Lareau, C. A., Duarte, F. M., Chew, J. G., Kartha, V. K.,
Burkett, Z. D., Kohlway, A. S., Pokholok, D., Aryee,
M. J., Steemers, F. J., Lebofsky, R., et al. Droplet-based
combinatorial indexing for massive-scale single-cell chro-
matin accessibility. Nature Biotechnology, 37(8):916–
924, 2019.

Lee, C. and van der Schaar, M. A variational information
bottleneck approach to multi-omics data integration. In
International Conference on Artificial Intelligence and
Statistics, pp. 1513–1521. PMLR, 2021.

Lotfollahi, M., Wolf, F. A., and Theis, F. J. scgen predicts
single-cell perturbation responses. Nature methods, 16
(8):715–721, 2019.

Lotfollahi, M., Susmelj, A. K., De Donno, C., Ji, Y., Ibarra,
I. L., Wolf, F. A., Yakubova, N., Theis, F. J., and Lopez-
Paz, D. Learning interpretable cellular responses to com-
plex perturbations in high-throughput screens. bioRxiv,
2021.

Lotfollahi, M., Litinetskaya, A., and Theis, F. J. Multigrate:
single-cell multi-omic data integration. bioRxiv, 2022.

Mimitou, E. P., Cheng, A., Montalbano, A., Hao, S., Stoeck-
ius, M., Legut, M., Roush, T., Herrera, A., Papalexi, E.,
Ouyang, Z., et al. Multiplexed detection of proteins, tran-
scriptomes, clonotypes and crispr perturbations in single
cells. Nature methods, 16(5):409–412, 2019.

Muscato, J. D., Morris, H. G., Mychack, A., Rajagopal, M.,
Baidin, V., Hesser, A. R., Lee, W., Inecik, K., Wilson,
L. J., Kraml, C. M., et al. Rapid inhibitor discovery by
exploiting synthetic lethality. Journal of the American
Chemical Society, 144(8):3696–3705, 2022.

Papalexi, E., Mimitou, E. P., Butler, A. W., Foster, S.,
Bracken, B., Mauck, W. M., Wessels, H.-H., Hao, Y.,
Yeung, B. Z., Smibert, P., et al. Characterizing the molec-
ular regulation of inhibitory immune checkpoints with
multimodal single-cell screens. Nature genetics, 53(3):
322–331, 2021.

Stephenson, E., Reynolds, G., Botting, R. A., Calero-Nieto,
F. J., Morgan, M. D., Tuong, Z. K., Bach, K., Sung-
nak, W., Worlock, K. B., Yoshida, M., et al. Single-cell
multi-omics analysis of the immune response in covid-19.
Nature medicine, 27(5):904–916, 2021.

Stoeckius, M., Hafemeister, C., Stephenson, W., Houck-
Loomis, B., Chattopadhyay, P. K., Swerdlow, H., Satija,
R., and Smibert, P. Simultaneous epitope and transcrip-
tome measurement in single cells. Nature methods, 14
(9):865–868, 2017.

Teichmann, S. and Efremova, M. Method of the year 2019:
single-cell multimodal omics. Nat. Methods, 17(1):2020,
2020.

Wessels, H.-H., Méndez-Mancilla, A., Papalexi, E., Mauck,
W. M., Lu, L., Morris, J. A., Mimitou, E., Smibert, P.,
Sanjana, N. E., and Satija, R. Efficient combinatorial
targeting of rna transcripts in single cells with cas13 rna
perturb-seq. bioRxiv, 2022.

Wolf, F. A., Angerer, P., and Theis, F. J. Scanpy: large-
scale single-cell gene expression data analysis. Genome
biology, 19(1):1–5, 2018.

Yao, C., Bora, S. A., Parimon, T., Zaman, T., Friedman,
O. A., Palatinus, J. A., Surapaneni, N. S., Matusov, Y. P.,
Chiang, G. C., Kassar, A. G., et al. Cell-type-specific
immune dysregulation in severely ill covid-19 patients.
Cell reports, 34(1):108590, 2021.


