
7-UP: generating in silico CODEX from a small set of
immunofluorescence markers

Eric Wu * 1 2 Alexandro E. Trevino * 1 Zhenqin Wu 2 Kyle Swanson 2 Honesty J. Kim 1 H. Blaize D’Angio 1

Ryan Preska 1 Gregory W. Charville 2 Piero D. Dalerba 3 Umamaheswar Duvvuri 4 Jelena Levi 5

A. Dimitrios Colevas 2 Nikita Bedi 2 Serena Chang 2 John B. Sunwoo 2 Aaron T. Mayer 1 James Zou 1 2

Abstract
Multiplex immunofluorescence (mIF) assays mul-
tiple protein biomarkers on a single tissue section.
Recently, high-plex CODEX (co-detection by in-
dexing) systems enable simultaneous imaging of
40+ protein biomarkers, unlocking more detailed
molecular phenotyping, leading to richer insights
into cellular interactions and disease. However,
high-plex data can be slower and more costly
to collect, limiting its applications, especially in
clinical settings. We propose a machine learn-
ing framework, 7-UP, that can computationally
generate in silico 40-plex CODEX at single-cell
resolution from a standard 7-plex mIF panel by
leveraging cellular morphology. We demonstrate
the usefulness of the imputed biomarkers in accu-
rately classifying cell types and predicting patient
survival outcomes. Furthermore, 7-UP’s imputa-
tions generalize well across samples from differ-
ent clinical sites and cancer types. 7-UP opens the
possibility of in silico CODEX, making insights
from high-plex mIF more widely available.

1. Introduction
The tissue microenvironment (TME) is a complex milieu
comprising many cell types and heterogeneous cell states.
Common techniques for understanding the TME like mass
spectrometry (Mann et al., 2001) and flow cytometry (Baum-
garth & Roederer, 2000) allow for bulk measurements of
many cell biomarkers, but discard valuable spatial informa-
tion in the process. Recently, multiplexed molecular imag-
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ing assays have enabled the quantification of cell types and
molecules in their native tissue context. Commercial multi-
plexed immunofluorescence (mIF) systems are increasingly
commonplace in clinical diagnostic and prognostic settings
(Berry et al., 2021) but are typically limited to quantifying
between 1 and 7 biomarkers (Akoya, 2021).

More recently, mIF techniques such as co-detection by in-
dexing (CODEX) (Goltsev et al., 2018) quantify 40 or more
markers in situ, allowing a richer and more holistic charac-
terization of the TME and its underlying cell types and dis-
ease processes. However, CODEX systems are significantly
more costly and time-consuming to run when compared to
most low-plex systems, which limits their wider adoption in
clinical settings.

To address this limitation, we introduce 7-UP, a machine
learning framework that generates in silico high-plex mIF
(30+ biomarkers) from only a panel of seven experimentally
measured biomarkers. Whereas typical 7-plex measure-
ments can only resolve up to 5-7 distinct cell types (Berry
et al., 2021), the imputed biomarkers from 7-UP enable
the identification of up to 16 cell types. Moreover, the im-
puted biomarker expressions can predict complex clinical
outcomes with accuracy comparable to using experimental
measurements from CODEX. 7-UP generalizes to new can-
cer types and samples that come from different clinical sites
than its training data. Our approach highlights a significant
opportunity to use machine learning toward inferring high-
dimensional molecular features from commonly available
low-plex imaging data.

1.1. Related works

Imputation techniques have been applied to missing data
in genomics (Liew et al., 2011; Kim et al., 2005; Hastie
et al., 2001) and transcriptomics (Zhou et al., 2020; Hou
et al., 2020) datasets, as well as in mass spectrometry and
shotgun proteomics (Liew et al., 2011; Emerson et al., 2009;
Liu & Dongre, 2021) data. Deep learning has been used to
extract morphological and spatial features from pathology
H&E-stained slides (Zhu et al., 2016; Alom et al., 2019; Lu
et al., 2021), and in turn enabled in silico IHC staining (He
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Figure 1. Overview of the 7-UP Framework. Panel A: Seven optimal biomarkers are selected from the full CODEX panel using a deep
learning autoencoder model. Panel B: From a full sample for each of the seven biomarkers, image patches are extracted for each cell.
Panels C&D: A deep learning model extracts morphological features from the image patches of each cell, which are combined with the
average expressions of the top seven biomarkers to predict the average cell expressions of the remaining CODEX panel biomarkers using
a machine learning regression model.

et al., 2022) and spatial transcriptomics (He et al., 2020).
More recently, computational methods have been developed
for improving cell type classification in CODEX-acquired
data (Hickey et al., 2021), and augmenting with spatial infor-
mation in particular (Zhang et al., 2022). To date, our work
is the first to demonstrate the effectiveness of deep-learning-
based morphological feature extraction toward multiplex
immunofluorescence imputation.

2. 7-UP summary
The 7-UP framework consists of the following pipeline:
First, we select an optimal panel of 7 biomarkers from the
full CODEX biomarker panel. While the choice of which
biomarkers to measure in a 7-plex imaging workflow can
depend on clinician preference and disease subtype, we
use a previously validated approach, Concrete autoencoder
(Abid et al., 2019), for automatically selecting informative
biomarkers. This approach identified DAPI, CD45RA,
CD15, pan-cytokeratin (PanCK), HLA-DR, Ki67, and
Vimentin (“Main panel” in Table 1), which we use in our
main experiments. Second, we extract cell-level spatial
features across each of these seven biomarkers in the
CODEX dataset. To do this, we train a convolutional neural
network (He et al., 2016) to learn spatial and morphological
features from cell image patches generated from the full
samples. Third, we combine cell-level spatial features with
average biomarker expression values to train a machine

learning regression model (Chen & Guestrin, 2016) to
impute the expression of the 30+ additional biomarkers.

To validate the veracity of the 7-UP imputed expressions,
we use them to predict cell types. To do so, we use them
in place of CODEX-measured expressions in a k-nearest
neighbors algorithm used to determine cell type ground truth.
In turn, these predicted cell types are used in place of the
CODEX-measured ground truth cell types in a graph neural
network (Wu et al., 2022) trained to produce sample-level
predictions for patient-level survival status, HPV status, and
recurrence.

3. Results
3.1. Evaluation across cancer types and clinical sites

Our primary dataset consists of 308 samples from 81 pa-
tients with head and neck squamous cell carcinomas at
the University of Pittsburgh Medical Center (UPMC-HNC).
Two external validation datasets are used: a head and neck
squamous cell carcinomas dataset with 38 samples from
11 patients from Stanford University (Stanford-HNC) to
demonstrate generalization on the same disease, and a col-
orectal cancer dataset with 292 samples from 161 patients
from Stanford University (Stanford-CRC) to demonstrate
generalization to another disease. UPMC-HNC is chosen as
the primary training and evaluation dataset as it contains the
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Figure 2. Top: Full slide samples of 7-UP predicted vs. CODEX-measured biomarkers. For each biomarker, the sample with the median
patchwise PCC score is shown. Bottom: Full slide samples of 7-UP predicted vs. CODEX-determined cell types. The samples with the
25th, 50th, and 75th percentile predicted patchwise F1 scores are shown.

largest number of samples, coverslips, and total cells. We
evaluate our models on held-out coverslips not seen during
training to assess model robustness to technical artifacts
across coverslips.

3.2. Concordance of biomarker imputations

7-UP achieves an average Pearson correlation coefficient
(PCC) of 0.534 across all predicted biomarkers using the
main panel in the UPMC-HNC dataset (Table 1). The
predictive performance also holds across an alternative in-
put panel (PCC of 0.529), which consists of DAPI, CD4,
CD15, PanCK, CD8, Ki67, and Vimentin. Immune-related
biomarkers like CD4, CD20, and CD45 are most accurately
predicted, with PCCs above 0.70.

3.3. Predicting cell types from imputed biomarkers

We also measure the reliability of the imputed biomarkers
by using them for determining cell types since cell type
identification is a common task in analyses of CODEX data.
Toward this task, 7-UP achieves a patchwise F1 score of

0.727 (Table 1). The ground truth labels in this analysis
are determined with the full CODEX-measured biomarker
panel.

3.4. Predicting patient phenotypes from predicted cell
types

To validate the reliability of the cell types determined by
7-UP imputed biomarkers, we use them to predict three
patient phenotypic outcomes: HPV infection status, primary
outcome (survival), and recurrence of disease. To this end,
we use a graph-based deep learning model (Wu et al., 2022)
trained using ground truth cell types from the UPMC-HNC
dataset to predict these three binary outcomes. We replace
the CODEX-measured cell types used to make the base-
line prediction with the predicted cell types as input to the
model. The results shown in Table 3 demonstrate that the
imputed cell types can predict phenotypic outcomes at a
level comparable to the ground truth labels.
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Table 1. Performance of 7-UP on the UPMC-HNC dataset. Biomarker imputation results are reported using the average patchwise
Pearson correlation coefficient (PCC). Cell type predictions are reported using a patchwise weighted F1 score. The first row refers to
the imputation regression model trained without including morphological features in the input. The second and third rows refer to the
models trained with morphological features. The main and alternative panels are described in the Results section. Numbers in parentheses
indicate the 95% bootstrapped confidence intervals.

PATCHWISE PCC PATCHWISE F1

UPMC-HNC DATASET 33 BIOMARKERS 16 CELL TYPES

7 BIOMARKERS 0.474 (0.006) 0.667 (0.002)
7 BIOMARKERS + MORPHOLOGY W/ MAIN PANEL 0.534 (0.009) 0.727 (0.002)
7 BIOMARKERS + MORPHOLOGY W/ ALTERNATIVE PANEL 0.529 (0.007) 0.739 (0.002)

Table 2. 7-UP generalization. Imputed biomarker and predicted cell type performance are reported on two external validation datasets
(Stanford-CRC and Stanford-HNC). The performance of a model trained on the UPMC-HNC dataset is reported on each validation dataset,
along with a reference model that has been trained on the validation dataset. Numbers in parentheses indicate the 95% bootstrapped
confidence intervals.

PATCHWISE PCC PATCHWISE F1

STANFORD-CRC DATASET 24 BIOMARKERS 16 CELL TYPES

WITH UPMC-HNC MODEL 0.489 (0.024) 0.614 (0.004)
WITH STANFORD-CRC MODEL 0.583 (0.031) 0.605 (0.004)

STANFORD-HNC DATASET 26 BIOMARKERS 18 CELL TYPES

WITH UPMC-HNC MODEL 0.475 (0.005) 0.757 (0.001)
WITH STANFORD-HNC MODEL 0.545 (0.004) 0.773 (0.001)

Table 3. Phenotype predictions using 7-UP. Three phenotypic outcomes are predicted using imputed vs CODEX-determined
(groundtruth) biomarkers. AUROC scores are reported. Numbers in parentheses indicate the 95% bootstrapped confidence intervals.

AREA UNDER CURVE (AUC) SURVIVAL STATUS RECURRENCE HPV STATUS

CODEX-DETERMINED CELL TYPES 0.889 (0.054) 0.887 (0.108) 0.929 (0.036)
IMPUTED CELL TYPES 0.841 (0.068) 0.894 (0.102) 0.896 (0.051)

3.5. Cross-site and cross-disease generalization

Finally, we evaluate our model on another head and neck
cancer dataset (Stanford-HNC) and a colorectal cancer
dataset (Stanford-CRC). The biomarker imputation and cell
type prediction performances remain stable (Table 2; e.g.
for Stanford-CRC: 0.489 vs 0.583 PCC and 0.614 vs 0.605
F1) even when evaluated on a different clinical site and can-
cer type, indicating that the model’s performance is robust
when evaluated on unseen data.

4. Discussion
High-plex immunofluorescence techniques like CODEX
enable an unprecedented understanding of TME and tissue
architecture but have seen limited clinical (diagnostic or
prognostic) utility due to their cost and data generation
times. On the other hand, standard IF or immunostaining
workflows, which image between 1 to 7 biomarkers, are
widely used in clinical settings. Our proposed framework
aims to unlock the richer TME representations available

with CODEX by up-leveling existing 7-plex data through
learning biomarker co-expression and morphological
patterns.

The ability to determine a subset of biomarkers in silico 1)
gives users immediate access to a larger set of biomarkers
beyond what has been experimentally measured, and 2)
frees up resources to measure more novel and biologically
relevant biomarkers. Thus, in addition to up-leveling 7-
plex systems, 7-UP can also push CODEX systems beyond
40 biomarker measurements to 60 or more, enabling even
greater cell type differentiation and disease characterization.

5. Code and Data Availability
Code will be available at https://gitlab.com/
enable-medicine-public/7-up. Datasets are
available upon request.

https://gitlab.com/enable-medicine-public/7-up
https://gitlab.com/enable-medicine-public/7-up
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