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Abstract

Most evolutionary-oriented deep generative mod-
els do not explicitly consider the underlying evo-
lutionary dynamics of biological sequences as it
is performed within the Bayesian phylogenetic
inference framework. In this study, we propose
a method for a deep variational Bayesian genera-
tive model (EvoVGM) that jointly approximates
the true posterior of local evolutionary parameters
and generates sequence alignments. Moreover,
it is instantiated and tuned for continuous-time
Markov chain substitution models such as JC69,
K80 and GTR. We train the model via a low-
variance stochastic estimator and a gradient ascent
algorithm. Here, we analyze the consistency and
effectiveness of EvoVGM on synthetic sequence
alignments simulated with several evolutionary
scenarios and different sizes.

1. Introduction
In systematics and evolutionary biology, probabilistic evo-
lutionary models are extensively used to study unseen and
complex historical events affecting the genomes of a set of
taxa during a period of time (i.e., recombination, horizon-
tal gene transfer and selective pressure). Their ability to
detect evolutionary events and measure their parameters us-
ing biological sequences has enabled valuable applications
in population genetics (Kern & Haussler, 2010), medicine
(Yuan et al., 2015) and epidemiology (Faria et al., 2014;
Dudas et al., 2017). These models allow the estimation of
probabilities of certain types of mutations such as substi-
tutions (Jukes & Cantor, 1969; Tavaré et al., 1986), indels
(Diallo et al., 2007) and genome rearrangements (Sankoff &
Blanchette, 1999). Main approaches supporting evolution-
ary studies, such as phylogenetics, implement evolutionary
models with Markovian properties (Tavaré et al., 1986).
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Typically, evolutionary parameters of these models are
jointly represented with different types of high-dimensional
variables (discrete and continuous), inducing a computa-
tionally intractable joint posterior. Bayesian phylogenetic
approaches provide methods to efficiently approximate the
intractable joint posterior and quantify the uncertainty in
the estimation of the parameters (Yang & Rannala, 1997;
Huelsenbeck & Ronquist, 2001). They mainly implement
random-walk Markov Chain Monte Carlo (MCMC) algo-
rithms, which can converge to an accurate posterior but with
a considerable cost. Furthermore, they are prone to limi-
tations due to the complexity of the posterior (Whidden &
Matsen IV, 2015), their dependence on initialization and
proposal distribution parameters, and their sensitivity to the
prior distributions (Huelsenbeck et al., 2002). Recently,
variational inference (VI) has sparked interest in phyloge-
netics as a robust alternative to approximate the intractable
posterior by relying on fast optimization methods (Dang &
Kishino, 2019; Fourment & Darling, 2019; Zhang & Mat-
sen IV, 2019; Zhang, 2020). VI finds an optimal candidate
from a space of tractable distributions that minimizes the
Kullback-Leibler (KL) divergence to the exact posterior (Jor-
dan et al., 1999; Blei et al., 2017). It inherently bounds the
intractable marginal likelihood of the observed data. More-
over, VI is also used in building deep generative models
(Kingma & Welling, 2014; Rezende et al., 2014). However,
contrary to Bayesian phylogenetic inference frameworks,
most evolutionary-oriented deep generative models do not
explicitly consider the underlying evolutionary dynamics of
the biological sequences (Riesselman et al., 2018; Lim &
Blanchette, 2020; Weinstein & Marks, 2021).

Here, we propose EvoVGM, a deep variational generative
model that simultaneously estimates local evolutionary pa-
rameters and generates nucleotide sequence data. Like phy-
logenetic inference, we explicitly integrate a continuous-
time Markov chain substitution model into the generative
model. The model is trained in an unsupervised manner
following the evolutionary model constraints.
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2. Background
2.1. Notation

The observed data X is an alignment of M character se-
quences with length N , where X ∈ AM×N . In our case,
the alphabet of characters A = {A,G,C, T} is a set of
nucleotides. xmn is the character in the mth sequence (xm)
and at the nth site (xn) of the alignment. Here, we assume
that each alignment X has a hidden ancestral state sequence
a ∈ AN . We take the hypothesis that each ancestral state an
has evolved independently from the other states {ai; i ̸= n}
to an extant character xmn over an evolutionary time ex-
pressed as a branch length t and following a substitution
model defined by a set of parameters ψ. In a Bayesian frame-
work, we seek representations allowing to model uncertainty
on the quantity and the composition of different entities. We
consider the observable characters (xm

n ) and the ancestral
states (an) as random variables (noted in bold, unlike scalar
values) and represent them by categorical distributions over
A. Also, branch lengths (tm) and substitution model param-
eters (ψ) will be modelled as random variables and will be
represented by suitable distributions.

2.2. Markov Chain Models of Character Substitution

The evolution of a character is measured by the number of
hidden substitutions that undergoes over time. To estimate
this quantity, we assume that the process of evolution fol-
lows a continuous-time Markov chain model whose states
belong toA. The model is parameterized by a rate matrix Q
and relative frequencies π of characters at equilibrium. Each
element of the matrix qij (i ̸= j) defines the instantaneous
substitution rate of character i changing into character j.
The diagonal elements qii are set up in a way that each row
sums to 0. Q is scaled by a factor µ, so that the time t will
be measured in the expected number of substitutions per site
and the average rate of substitution at equilibrium will be 1.
We use time-reversible Markov chain models assuming the
amount of changes from one character to another is the same
in both ways. For nucleotide substitution time-reversible
models, the equation of Q is

Q =


· aπG bπC cπT

aπA · dπC eπT
bπA dπG · fπT
cπA eπG fπC ·

µ,

where a, b, c, d, e, andf are the set of relative substitution
rate parameters ρ, and πA + πG + πC + πT = 1 are the
relative frequencies π. Once Q is estimated we can compute
the probability transition matrix P over an evolutionary time
t as P(t) = exp(Q t). The matrix exponential is computed
using spectral decomposition of Q as it is reversible (see
(Lemey et al., 2009) and (Yang, 2014) for more details).

Several substitution models could be generated depending

on the constraints placed on the set of parameters ψ = {ρ,
π}. The simplest model is JC69 with equal substitution rates
and uniform relative frequencies (Jukes & Cantor, 1969).
The K80 model defines uniform frequencies like JC69, but
it differentiates between the two types of substitution rates
corresponding to transitions (α = a = f ) and transversions
β = b = c = d = e (Kimura, 1980). Usually, K80
is parameterized by the transition/transversion rate ratio
κ = α/β. Finally, the general time-reversible (GTR) model
sets all the parameters ψ free (Tavaré et al., 1986; Yang,
1994).

2.3. Evolutionary Posterior

Along with a and t variables, we consider the parameters
of the Markov chain model ψ as latent (hidden) variables to
be inferred from the observed data X. Assuming an inde-
pendent evolution of the sites in an alignment (Felsenstein,
1981), the marginal likelihood of the data X factorizes into
p(X) =

∏N
n=1 p(xn). The inference of the latent variables

for each site xn requires the computation of the evolutionary
joint posterior p(an, t,ψ|xn). The evolutionary posterior
is calculated according to Bayes’ theorem:

p(an, t,ψ|xn) =
p(xn,an, t,ψ)

p(xn)
, (1)

which exposes the joint density of the observable variable
and the latent variables p(xn,an, t,ψ), and the marginal
likelihood p(xn). The former is factorized as a product
of the joint prior density of the latent variables p(an, t,ψ)
and the likelihood p(xn|an, t,ψ). The latter is calculated
by marginalizing over the values of all the latent variables
as
∫∫∫

p(an, t,ψ) p(xn|an, t,ψ) dan dt dψ. The compu-
tation of the evolutionary joint posterior density is computa-
tionally intractable as it depends on the evaluation of p(xn),
which is intractable due to the integrals in its marginaliza-
tion. We show in the next section strategies to determine
each term in the equation 1.

3. Proposed Evolutionary Model
In this section, we describe a deep variational genera-
tive model that simultaneously estimates local evolutionary
biological parameters and generates nucleotide sequence
data. Similar to deep variational-based generative models
(Kingma & Welling, 2014; Rezende et al., 2014), the pro-
posed model architecture consists of two main sub-models:
1) a set of deep variational encoders that infers the parame-
ters of evolutionary-latent-variable distributions and allows
sampling, and 2) a generating model that computes prob-
ability transition matrices from sampled latent variables
and generates a distribution of sequence alignments from
reconstructed ancestral states (see Figure 1).
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Figure 1: Graphical illustration of the inference (dashed
gray lines) and the generation (solid lines) processes of
the GTR-based variational generative model. Gray circles
represent the observed variables. Blank circles represent
the latent variables. {φa, φt, φρ, φπ} is the set of hyper-
parameters of the prior densities.

3.1. Variational Inference of the Joint Posterior

We use mean-field variational inference to approximate
the true joint posterior probability distribution by a new
probability distribution qϕ(an, t,ψ|xn) (Jordan et al., 1999;
Kingma & Welling, 2014; Rezende et al., 2014). We model
each latent variable by an independent approximate distri-
bution whose parameters will be inferred using a non-linear
transformation either of xn, or an independent, fixed random
noise ζ. The non-linear transformations are implemented
using deep neural networks (NeuralNet) parameterized by
a set of independent and adaptable variational parameters
ϕ = {ϕa, ϕt, ϕψ}.

For each sequence xm, we infer and sample an evolution-
ary time variable tm. We model its approximate density
qϕt(t

m) using a gamma distribution to ensure the positive-
ness of the samples. The parameters of the distribution
(shape and rate) are produced by a non-linear transforma-
tion on uniform noise ζt as follows:

qϕt(t
m) = Gamma(tm; NeuralNet(ζt; ϕt)).

Next, we infer and sample the latent variables of the Markov
chain model parameters ψ with independent approximate
densities qϕψ (ψ). The JC69 model does not have any free
parameters to be estimated, so ψ = ∅. For the K80 model,
we infer the latent variable of the transition/transversion rate
ratio (κ) using a gamma-based approximate distribution
(qϕκ(κ)) to ensure the positiveness of the samples. Its local
parameters are produced by a neural network on uniform
noise ζκ as follows:

qϕκ(κ) = Gamma(κ; NeuralNet(ζκ; ϕκ)).

In the case of the GTR model, we model the variational
densities of the substitution rate parameters (ρ) and the
relative frequencies (π) using Dirichlet distributions. This
ensures that the sum of the sampled values is equal to one.
Their concentrations are generated by a set of independent
neural networks on uniform noises ζρ and ζπ , respectively:

qϕρ(ρ) = Dirichlet(ρ;NeuralNet(ζρ; ϕρ)),
qϕπ (π) = Dirichlet(π;NeuralNet(ζπ; ϕπ)).

Lastly, for each site xn, an ancestral variable an is inferred
and sampled with an approximate density qϕa(an |xn) rep-
resented by a categorical distribution over the (|A| − 1)-
simplex as follows:

qϕa(an |xn) = Categorical(an;NeuralNet(xn; ϕa)).

We apply a non-linear transformation on xn to produce the
local parameters of qϕa(an |xn), which are a set of |A|
probabilities that sum to one. Using a mean-field varia-
tional inference approach, the approximate joint posterior
factorizes into:

qϕ(an, t,ψ|xn) = qϕa(an |xn)

M∏
m=1

qϕt(t
m) qϕψ (ψ).

(2)

3.2. Generating Model Computation

The generating model is represented by the joint density
p(xn,an, t,ψ) = p(an, t,ψ) p(xn|an, t,ψ), which is pa-
rameterized only by the local latent variables. We use
independent prior densities for the latent variables, so
p(an, t,ψ) = p(a) p(t) p(ψ). To ease the computation, we
apply for each prior density the same distribution type as its
corresponding approximate posterior density and determine
its hyper-parameters φ. Moreover, for each nucleotide xmn ,
we use the probability transition matrix P(tm) to define the
likelihood function, which is the probability of evolving a
character an into xm

n during a time tm, as:

x̂m
n = an ×P(tm;ψ),

p(xm
n |an, tm,ψ) = Categorical(xm

n ; x̂m
n ).

(3)

The likelihood of a site xn is computed following a pre-
order traversal. We call it a top-down likelihood since it
includes the sampled ancestral states in its estimation. It
is different from the likelihood computed in a phylogeny,
which is based on a post-order traversal (Felsenstein, 1981)
and does not include sampled ancestral states. Finally, the
joint density is

p(xn,an, t,ψ) = p(a) p(t) p(ψ)

M∏
m=1

p(xm
n |an, tm,ψ).

(4)
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Table 1: Log likelihood estimates of EvoVGM models using validation alignments of five sequences with a length of 5000
bp. JC69, K80 and GTR substitution models were used to simulate training and validation alignments. The estimates are
computed and averaged from fitting and running the models ten times.

JC69 K80 GTR
MEAN STD MEAN STD MEAN STD

ACTUAL -17249.830 -17024.340 -15818.739
EVOVGM_JC69 -17209.913 142.128 -17287.278 185.441 -16491.810 125.664
EVOVGM_K80 -17203.100 151.758 -17007.724 133.294 -16495.530 175.024
EVOVGM_GTR -17204.540 121.459 -17014.296 151.457 -15540.730 126.673

3.3. Stochastic Estimator and Learning Algorithm

Variational inference allows us to form a lower bound on
the marginal likelihood of each site xn as log p(xn) ≥
Ln(ϕ,xn), where Ln is the evidence lower bound (ELBO)
(Jordan et al., 1999; Blei et al., 2017). Putting together
equations 1, 2 and 4, we can derive the equation of the
multi-sample estimator of the EvoVGM model as follows:

Ln(ϕ,xn) =

(
1

L

L∑
l=1

M∑
m=1

log p(xm
n |aln, tm,l,ψl)

)

−αKL
(
KL(qϕa(an |xn) ∥ p(a))+

M∑
m=1

KL(qϕt(t
m) ∥ p(t))

+ KL(qϕψ (ψ) ∥ p(ψ))
)
, (5)

where L is the sampling size, KL(· ∥ ·) is the Kull-
back–Leibler divergence, and αKL is a regularization co-
efficient (see the development of this equation in ??). This
estimator is computationally tractable because it is inde-
pendent of the direct evaluation of the true joint poste-
rior. To maximize the ELBO and learn the global varia-
tional parameters ϕ, EvoVGM estimates and backpropa-
gates the gradients for the whole data X using the repa-
rameterization trick (Kingma & Welling, 2014) and a gra-
dient ascent optimizer. The algorithm of EvoVGM is
detailed in Algorithm 1. It is implemented in Pytorch
(Paszke et al., 2019) and its open-source code is available at
https://github.com/maremita/evoVGM.

4. Experiments
The evaluation of the proposed Bayesian variational method
to estimate evolutionary parameters and generate sequence
alignments is oriented towards assessing its consistency,
effectiveness, and the understanding of its behavior during
the training using simulated sequence alignments.
We used Pyvolve (Spielman & Wilke, 2015) to simulate
the evolution of different sequence alignments with a site-
wise homogeneity model and a combination of substitution

models (JC69, K80 and GTR), the number of sequences (3,
4 and 5) and alignment lengths (100 bp, 1000 bp and 5000
bp). A site-wise homogeneity model evolves sequences
from a root sequence with the same substitution model over
lineages and with the same branch lengths for nucleotides.
The sequence alignments used in the training step of the
EvoVGM models were simulated with different random
seeds from those used in the validation step but with the
same array of evolutionary parameters.

First, we evaluated and compared three variants of the
EvoVGM model, each one implemented with a differ-
ent Markov chain substitution model: EvoVGM_JC69,
EvoVGM_K80, EvoVGM_GTR. Each model was fit ten
times to the same sequence alignment using a different
weight initialization. Table 1 and Figure A.1 show the re-
sults of the models trained and evaluated with alignments of
five sequences of length 5000 base pairs (bp). All models
converge to values closer to or higher than the actual log
likelihood of the data, which is calculated with equation
3 using the known ancestral sequences and evolutionary
parameters. To assess the consistency and the effectiveness
of the models, we calculated the Euclidean distance and
the Pearson correlation coefficient between the estimated
and actual values of the evolutionary parameters. Mostly,
parameter estimates improve when the number of sequences
is higher and the alignments are longer. All three models
approximated the branch lengths even when trained with
datasets simulated with a different substitution model (Ta-
bles A.1, A.1, A.1, and others not shown here). For small
datasets, EvoVGM_GTR estimates better relative frequen-
cies than substitution rates. However, as the datasets get
larger, the approximations of the substitution rates get better
(Tables 2 and 3).

Lastly, we assessed the effect of different hyper-parameters
(αKL, the size of the hidden layers of the neural networks of
the encoders, the sample size, and the learning rate) on the
behavior and performance of the three models. Each model
was fit ten times on the same alignment of five 5000-bp
sequences simulated using its respective substitution model.
The results are highlighted in Figures A.2, A.3 and A.4. In

https://github.com/maremita/evoVGM
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Table 2: Euclidean distance (DIST) and Pearson correlation
coefficient (CORR) between actual and estimated substitu-
tion rates by EvoVGM_GTR. The GTR substitution model
was used to simulate training and validation alignments.

N → 100 1000 5000
M DIST CORR DIST CORR DIST CORR

3 0.621 0.103 0.177 0.668 0.129 0.784
4 0.305 0.472 0.114 0.864 0.036 0.985
5 0.206 0.652 0.053 0.968 0.012 0.998

Table 3: Euclidean distance (DIST) and Pearson correla-
tion coefficient (CORR) between actual and estimated rela-
tive frequencies by EvoVGM_GTR. The GTR substitution
model was used to simulate training and validation align-
ments.

N → 100 1000 5000
M DIST CORR DIST CORR DIST CORR

3 0.190 0.941 0.084 0.991 0.095 0.992
4 0.125 0.891 0.090 0.996 0.050 0.999
5 0.176 0.775 0.022 1.000 0.033 0.999

general, models converge faster when the αKL coefficient
is lower, and the number of hidden layers and the learning
rate are larger. The sample size does not affect the over-
all convergence. However, a small sample size induces a
substantial variance in the estimator.

5. Conclusion
In this work, we show that a deep variational Bayesian gen-
erative method could constitute a feasible option to approxi-
mate the true parameters of an evolutionary model and gener-
ate the associated sequence alignment. The implementation
of this method, EvoVGM, estimates the branch lengths, the
ancestral states, and the substitution model parameters from
a multiple sequence alignment. We assessed its consistency
and effectiveness using sequence alignments simulated with
different sizes. In general, the EvoVGM model needs a
few thousand iterations to converge. It tends to be accurate
with low variance in estimating the evolutionary parameters
using fine-tuned hyper-parameters. Moreover, it provides
an effective way of estimating the parameters for different
substitution models such as JC69, K80, and GTR. The gen-
eralization to other models like HKY is also straightforward.
For future work, many extensions could be explored to im-
prove the EvoVGM model, such as considering a prior tree
topology, investigating the influence of the priors on infer-
ence, and allowing parameter heterogeneity across sites and
lineages.
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A. Appendix
A.1. Development of the ELBO L(ϕ,X)

log p(X) =

N∑
n=1

log p(xn)

=

N∑
n=1

Eqϕ(an,t,ψ|xn)

[
log

p(xn,an, t,ψ)

p(an, t,ψ |xn)

]

=

N∑
n=1

Eqϕ(an,t,ψ |xn)

[
log

p(xn,an, t,ψ)

qϕ(an, t,ψ |xn)

qϕ(an, t,ψ |xn)

p(an, t,ψ |xn)

]

=

N∑
n=1

Eqϕ

[
log

p(xn,an, t,ψ)

qϕ(an, t,ψ |xn)

]
+ Eqϕ

[
log

qϕ(an, t,ψ |xn)

p(an, t,ψ |xn)

]

=

N∑
n=1

Ln(ϕ,xn)︸ ︷︷ ︸+
N∑

n=1

KL (qϕ(an, t,ψ |xn) ∥ p(an, tn,ψ |xn))

≥ L(ϕ,X).

L(ϕ,X) =

N∑
n=1

Ln(ϕ,xn)

=

N∑
n=1

Eqϕ

[
log

p(xn,an, t,ψ)

qϕ(an, t,ψ |xn)

]

=

N∑
n=1

Eqϕ

[
log p(xn|an, t,ψ) + log p(a) + log p(t) + log p(ψ)

− log qϕa(an |xn)− log qϕt(t)− log qϕψ (ψ)

]
= −N

(
Eqϕ

[
log p(ψ)− log qϕψ (ψ)

]
+ Eqϕ [log p(t)− log qϕt(t)]

)
+

N∑
n=1

Eqϕ [log p(xn|an, t,ψ)] + Eqϕ [log p(a)− log qϕa(an |xn)]

= −N
(
KL(qϕψ (ψ) ∥ p(ψ)) + KL(qϕt(t) ∥ p(t))

)
+

N∑
n=1

Eqϕ [log p(xn|an, t,ψ)]− KL(qϕa(an |xn) ∥ p(a))

= −N

(
KL(qϕψ (ψ) ∥ p(ψ)) +

M∑
m=1

KL(qϕt(t
m) ∥ p(t))

)

+

N∑
n=1

(
1

L

L∑
l=1

M∑
m=1

log p(xm
n |aln, tm,l,ψl)

)
− KL(qϕa(an |xn) ∥ p(a)).
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A.2. Learning algorithm for EvoVGM model

Algorithm 1 Learning algorithm for EvoVGM
Input: Alignment X of M sequences with length N
ϕa, ϕt, ϕψ ← initialize global variational parameters
for i ∈ [1...max_iter] do
tm ← Sample M × L branch latent variables (ϕt)
ψ ← Sample L evolutionary latent variables (ϕψ)
Pm ← Compute M × L probability transition matrices (tm,ψ)
for n ∈ [1...N ] do
an ← Sample L ancestor latent variable (xn;ϕa)
x̂n ← Generate M × L nucleotides (an,Pm)
Ln ← Compute ELBO according to the equation A.1
L += Ln

end for
g ← Compute gradients of total ELBO (L)
ϕa, ϕt, ϕψ ← Update parameters (g) with gradient ascent optimizer

end for

A.3. Supplemental results

A.3.1. ASSESSMENT OF EVOVGM MODELS ON DIFFERENT DATASETS

Figure A.1: Evidence lower bound (ELBO) of the EvoVGM models. The models were trained with alignments of five
5000-bp sequences which were simulated with three different substitution models (JC69, K80 and GTR). We show the trend
of the ELBO over the first 100 iterations of the training.
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Table A.1: Euclidean distance (DIST) and Pearson correlation coefficient (CORR) between original and estimated branch
lengths by EvoVGM_JC69. Rows correspond to the number of sequences. Columns correspond to the alignment length.
Datasets simulated with JC69 substitution model.

N → 100 1000 5000
M DIST CORR DIST CORR DIST CORR

3 0.129 0.969 0.069 0.982 0.143 0.982
4 0.166 0.938 0.065 0.997 0.079 0.997
5 0.179 0.841 0.096 0.993 0.076 0.990

Table A.1: Euclidean distance (DIST) and Pearson correlation coefficient (CORR) between original and estimated branch
lengths by EvoVGM_K80. Rows correspond to the number of sequences. Columns correspond to the alignment length.
Datasets simulated with K80 substitution model.

N → 100 1000 5000
M DIST CORR DIST CORR DIST CORR

3 0.133 0.948 0.171 0.975 0.074 0.975
4 0.184 0.855 0.093 0.996 0.049 0.992
5 0.180 0.835 0.062 0.990 0.073 0.999

Table A.1: Euclidean distance (DIST) and Pearson correlation coefficient (CORR) between actual and estimated branch
lengths by EvoVGM_GTR. Rows correspond to the number of sequences. Columns correspond to the alignment length.
Datasets simulated with GTR substitution model.

N → 100 1000 5000
M DIST CORR DIST CORR DIST CORR

3 0.300 0.984 0.090 0.980 0.097 0.986
4 0.076 0.994 0.086 0.998 0.085 0.992
5 0.081 0.986 0.069 0.995 0.116 0.962



Inferring Ancestral States and Evolutionary Parameters using EvoVGM

A.3.2. HYPER-PARAMETERS EVALUATION OF EVOVGM MODELS

(a) αKL

(b) Hidden size

(c) Sample size

(d) Learning rate

Figure A.2: Performance of the EvoVGM_JC69 model for multiple settings of (αKL, the size of the hidden layers of the neural networks
of the encoders, the sample size and the learning rate. The JC69 substitution model was used to simulate training and validation alignments
of five sequences with a length of 5000 bp. We show the trend of the performance over the first 500 iterations of the training.
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(a) αKL

(b) Hidden size

(c) Sample size

(d) Learning rate

Figure A.3: Performance of the EvoVGM_K80 model for multiple settings of (αKL, the size of the hidden layers of the neural networks
of the encoders, the sample size and the learning rate. The K80 substitution model was used to simulate training and validation alignments
of five sequences with a length of 5000 bp. We show the trend of the performance over the first 500 iterations of the training.
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(a) αKL

(b) Hidden size

(c) Sample size

(d) Learning rate

Figure A.4: Performance of the EvoVGM_GTR model for multiple settings of (αKL, the size of the hidden layers of the neural networks
of the encoders, the sample size and the learning rate. The GTR substitution model was used to simulate training and validation alignments
of five sequences with a length of 5000 bp. We show the trend of the performance over the first 500 iterations of the training.


