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Abstract
Systems biology seeks to create math models of
biological systems to reduce inherent biological
complexity and provide predictions for applica-
tions such as therapeutic development. However,
it remains a challenge to determine which math
model is correct and how to arrive optimally at the
answer. We present an algorithm for automated
biological model selection using mathematical
models of systems biology and likelihood free in-
ference methods. Our algorithm shows improved
performance in arriving at correct models without
a priori information over conventional heuristics
used in experimental biology and random search.
This method shows promise to accelerate biologi-
cal basic science and drug discovery.

1. Introduction
Biological cellular systems exhibit super exponential scaling
in the number of biological states achieved arising from
different combinations and sequences of cell regulators,
such as messenger proteins and transcription factors (Letsou
& Cai, 2016). This complexity impedes our understanding
of diseases and development of therapeutics. We focus here
on the combinatorial complexity of biology, defined by the
vast number of models and their parameters that describe
biological systems.

This combinatorial problem in biology is exemplified by
promiscuous signaling, which is the phenomenon of mul-
tiple protein ligands in a pathway being able to bind to
multiple receptors in a competitive manner. The Bone Mor-
phogenetic Protein (BMP) pathway exemplifies this type of
signaling with multiple protein ligands, and type I and II
receptors present in the pathway, each combining with one
another at different rates to form a complex of ligand, type I,
and type II receptor to phosphorylate SMAD 1/5/8 to send a
downstream gene expression signal. The BMP pathway can
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be mathematically modeled by mass action kinetics (Antebi
et al., 2017) and previous work demonstrated how to opti-
mally infer BMP models’ parameters using Likelihood Free
Inference (LFI), also known as Simulation Based Inference
(SBI), using the SBIDOEMAN algorithm (Zaballa & Hui,
2021). However, since multiple models have been proposed
for the BMP pathway (Antebi et al., 2017; Su et al., 2022),
there remains ambiguity in determining which model best
describes observed experimental data.

We propose to use the previously developed SBIDOEMAN
algorithm and a novel method to approximate a model’s
marginal probability, p(M|xo,θ), within Bayesian Model
Averaging (BMA) to select a correct model from a set of
models proposed. This method, which we call SBIDOE-
MAN BMA, uses models’ prior distributions of parame-
ters, p(θ), to design optimal experiments using a mutual
information approximation I(θ,x; d) between model pa-
rameters and data, then determines the posterior distribu-
tion of parameters given observed data, p(θ|xo), by LFI,
and finally approximates a marginal likelihood of a biolog-
ical model given observed data points, p(M|xo,θ). This
marginal probability is used as a probability measure of a
given model, M, and can be used in BMA to determine
the next experiment to evaluate and a weighting of possible
models.

Previous work for optimal experimental designs in biologi-
cal systems studied graphical models describing gene reg-
ulatory networks, modeled using Bayesian graphs, (Cho
et al., 2016) and M-estimators applied to Gaussian Markov
Random fields, (Zheng et al., 2018) both of which have
closed-form information measures. By contrast, we evaluate
methods exclusive to the LFI setting where likelihoods and
closed-form information measures are not tractable. Regard-
ing model selection, trained classifiers have been proposed
to classify whether data can fit a proposed model or not
(Radev et al., 2021). While useful in model selection, this
method does not provide a posterior distribution of models’
parameters or design optimal experiments. Our method pro-
vides an alternative for scientists who have a model of their
system that they can simulate but not evaluate its likelihood
function, compare models, and design experiments towards
the most promising model. Additionally, our method has the
potential to be used with biological highthroughput screen-
ing (HTS) systems to increase the efficiency of such systems
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to discover novel biology and therapeutics.

In summary, the key contributions of this paper are:

• A method to determine the marginal probability of a
model given observed data.

• BMA applied to optimal experimental designs to de-
sign experiments for a given model.

• An automated algorithm to design and evaluate exper-
iments in biological models that is compatible with
HTS of biological systems.

2. Background
2.1. Modeling the BMP pathway

Two mass action kinetics models have been proposed for the
BMP pathway. The one-step model in Equation (1) models
type I (A) and type II (B) receptors and a ligand (L) forming
a trimer complex in a single step (Su et al., 2022)

A+B + L
K−→ T. (1)

The two-step model in Equations (2) and (3) adds a param-
eter to model a ligand first binding with a type I receptor
before forming a trimeric complex with a type II receptor
(Antebi et al., 2017) as follows

A+ L
K1−−→ D (2)

B +D
K2−−→ T. (3)

Both models have a complex, T , that phosphyrolyates
SMAD to send a downstream gene expression signal, S,
with a certain efficiency, ϵ as

ϵT = S. (4)

Steady-state signals can be simulated using convex opti-
mization (Su et al., 2022).

2.2. Normalizing Flows

Given a dataset, one may ask what is the probability of a
certain data point in the dataset, px(x), of a variable x with
RD dimensions. However, this probability density is usually
intractable or unknown. Normalizing flows provide a way
to answer this question by creating a transformation from a
known simple distribution, pu(u), such as a Gaussian distri-
bution, to the data distribution, px(x), by a series of nonlin-
ear and invertible composition of functions, f : RD → RD,
where f is composed of N functions, f = fN ◦ · · · ◦ f1.
We can map from a base distribution to target distribution

using the change-of-variables formula for random variables
as

px(x) = pu(u)|detJ(f)(u)|−1, (5)

where J(f)(u) is the Jacobian matrix of f evaluated at u.
See Murphy (2023) for details about normalizing flows.

2.3. Likelihood Free Inference

For models with an implicit or intractable likelihood func-
tion, p(x|θ), but whose response may be simulated, we can
use LFI methods to approximate the posterior q(θ|x) or
likelihood q(x|θ). This can be done by drawing N samples
from the prior p(θ) and generating a dataset {(θn,xn)}Nn=1

by sampling θn ∼ p(θ). Each (θn,xn) is a joint sample
from p(θ,x) = p(θ)p(x|θ), and can be used to train a
normalizing flow to approximate the posterior q(θ|x) con-
ditioned on an observed xo (Greenberg et al., 2019; Papa-
makarios & Murray, 2016) or approximate the likelihood
q(x|θ) conditioned on θ. See Papamakarios et al. (2019)
for details on applying normalizing flows to LFI.

While LFI provides a method to approximate a model’s
posterior or likelihood, practical considerations, such as
difficulty in rejection sampling in in sequential neural pos-
terior estimate (SNPE) (Greenberg et al., 2019) or pro-
hibitively slow MCMC sampling for sequential neural like-
lihood estimate (SNLE) (Papamakarios et al., 2018), make
LFI methods difficult to implement. In response to this
difficulty, recent methods have developed variational meth-
ods to approximate the posterior or likelihood (Glöckler
et al., 2022; Wiqvist et al., 2021). These methods, re-
ferred to here as sequential neural likelihood variational
inference (SNLVI), train another normalizing flow, qϕ(θ),
to minimize the divergence from an estimated likelihood,
ϕ∗ = argminϕD(qϕ(θ)||qψ(x|θ)). We use SNLVI meth-
ods to overcome prior practical difficulties in LFI methods.

2.4. Optimal Experimental Design for Implicit
Likelihood Model Selection

Optimal experimental designs (OEDs) can be formulated as
an optimization (Boyd & Vandenberghe, 2006) or informa-
tion theoretic problem (MacKay, 1992). Assuming designs
are independent of model parameters, we formulate this
problem as maximizing the information gain (IG) (Foster
et al., 2019), or, the difference in entropy given a proposed
design, d, as

IG(x,d) = H[p(θ)]−H[p(θ|x,d)]. (6)

This objective function can be rewritten as a utility func-
tion, U(d), that maximizes the mutual information (MI),
I(v;y|d) between a variable of interest, v, and the observed
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data, x, at particular design, d. The MI variable of interest,
v, can be adapted to the scientific question at hand (Ryan
et al., 2016). A gradient-based approach for OEDs was
recently proposed for likelihood free models that provides
a way to both select a model,M, by BMA and determine
its parameters, p(θ|M) with a minimum number of exper-
iments (Kleinegesse & Gutmann, 2021). Finding designs
that optimally discover a model and its parameters can be
formulated as the following utility function

U(d) =
∑
M

∫
p(x|θM,M,d)p(θM,M)

log

(
p(θM,M|x,d)
p(θM,M)

)
dx.

(7)

We implement equation 7 by simply averaging each model’s
Mutual Information Neural Estimation (MINE) (Belghazi
et al., 2018) MI estimate. The estimated MI is then used
as the objective function in Bayesian Optimization using a
Gaussian Process (Kleinegesse & Gutmann, 2020).

2.5. Bayesian Model Averaging and the Bayes Factor

The weighting of model probabilities is also known as
the Bayes Factor (BF), which we define here as BF =
p(M1)/p(M0), and can be used as a form of model se-
lection where BF > 10 is strong evidence for M1 and
BF < 1/10 is strong evidence forM0. We only use the
BF for model selection as it uses marginal probabilities that
prefer simpler models by the Bayesian Occam’s razor effect.
Although, this relies on an accurate estimate of the model’s
marginal probability. See Murphy (2022) for further discus-
sion on various model selection techniques.

2.6. Approximating Model Marginal Probability

To perform model selection, we need an estimate of each
model’s marginal probability in order to calculate the BF. To
do this, we can use a normalizing flow with a Gaussian base
distribution pu(u) that can provide a probability of a model
given the posterior parameter distribution and observed data,
p(M|xo,θ,d), which is the same as marginal likelihood,
p(xo|θ,M,d), when assuming uniform priors over models,
p(Mi) = 1/|M|. This flow is trained by sampling data
from the simulator ofM to produce x ∼ px(x|xo,M,θ)
that can be used to train a reverse flow function to a base
Gaussian distribution u = f−1(x). We propose the follow-
ing method to approximate the marginal likelihood.
Proposition 2.1. The marginal likelihood of a model,M,
given an observed data vector, xo, and the model’s pa-
rameters, θ, can be approximated as p(xo|M) ≈ 1 −
Φ(f−1(xo)), where f−1 is the pullback of a trained nor-
malizing flow from the observed data distribution, px(xo),
to a Gaussian base distribution, pu(u), and Φ is cumulative
distribution function of a Gaussian distribution.

We provide a proof of Proposition 2.1 in Appendix B. Al-
gorithm 1 in Appendix A brings these parts together in
SBIDOEMAN BMA to optimally determine models and
their parameters.

POLICY MEDIAN BF 25% 75%

ONE-STEP RANDOM 0.05 0.02 0.17
ONE-STEP EQUI 0.55 0.09 3.72
ONE-STEP SDM BMA 0.03 0.01 0.05
TWO-STEP RANDOM 0.74 0.22 1.28
TWO-STEP EQUI 2.12 0.79 16.11
TWO-STEP SDM BMA 5.70 1.38 34.66

Table 1. Median and interquartile range (IQR) Bayes Factor (BF)
values after 5 rounds of experiments for both one-step and two-step
datasets compared to random and equidistant experimental design
policies. Lower BF is better for the series of one-step models while
higher BF is better for the two-step model. For both models, both
the median and IQR values are better than competing approaches.

Figure 1. Final Bayes Factor (BF) after 5 design rounds and an
ensemble of models. Compared to controls for both models, SBI-
DOEMAN BMA performed an order of magnitude better on the
one-step model and performed more than two times better than
control policies of the two-step model.

3. Results
We evaluated SBIDOEMAN BMA for model selection by
evaluating the BF over five rounds of experiments when
the one-step BMP pathway was true and when the two-step
BMP pathway was true by holding out a single set of param-
eters for each model, θ{1,2}T . When evaluating performance
across designs, we compared to random search, as shown in
Figure 2. We also compared final BF to random and equidis-
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Figure 2. Change in Bayes Factor (BF), p(twostep)/p(onestep),
over design round when the one-step (top) and two-step (bottom)
models are true. The strong evidence threshold for both models
is labeled in red. Top: When the one-step model is true, SBI-
DOEMAN BF model trends down, indicating the one-step model
is true and outperforms random search by the final design. The
median BF value for the SBIDOEMAN model strongly suggests
the one-step model is true by the fifth round. Bottom: When the
two-step model is true the median value of the SBIDOEMAN BF
trends upwards, indicating the two-step model is true, and has a
median trend that outperforms the competing random search by
the last three designs. The two-step model’s final value indicates
only moderate evidence in favor of the true two-step model.

tant ligand titrations which is a heuristic commonly used in
biology to evaluate the response of an assay. Equidistant
designs are logarithmically-equal spaced designs across a
domain of interest. Here, this would be five equally spaced
designs in concentrations from 10−3 to 103ng/ml. Results
of the final design comparison are shown in Figure 1 and
Table 1.

Examining the change in BF across designs Figure 2, we
see that across an ensemble of independent and identically
distributed (iid) SBIDOEMAN models that the median per-
formance outperforms random search for both the one-step
and two-step models. When looking at the final BF after a
budget of 5 designs, as shown in Table 1 and Figure 2, we
see that the median performance of SBIDOEMAN BMA

outperforms random and equidistant data, with SBIDOE-
MAN BMA interquartlie range (IQR) values performing
better, or almost better, than competing policy median val-
ues. While random search performed as well as SBIDOE-
MAN BMA in the one-step model, it performs worse in the
more complex two-step model, suggesting that principled
heuristics and optimal experimental design algorithms are
needed for more complex models of biology.

4. Discussion
Robustness and Performance of SBIDOEMAN BMA We
demonstrated the ability of SBIDOEMAN BMA to select a
true model of the BMP pathway over competing methods,
including a standard heuristic in biological systems. Across
an ensemble of models, prediction of optimal designs and
subsequent posterior evaluation are more efficient. In the
process of comparing SBIDOEMAN BMA, we have shown
how to estimate a model’s marginal probability using nor-
malizing flows. We have also shown that averaging the
mutual information estimate between models still results in
designs that outperform competing methods in improving
the quality of experiments.

Future Work We demonstrated application of SBIDOE-
MAN BMA to two simple models, the one-step and two-
step models, of the BMP pathway, each with two and three
parameters, respectively. The efficacy of the SBIDOEMAN
algorithm to scale and infer larger implicit likelihoods, such
as a BMP model with up to 275 parameters for a BMP two-
step model with up to 10 unique ligands, 4 type I receptors,
and 3 type II receptors, remains to be seen. Recent innova-
tions in LFI methods, such as SNLVI (Glöckler et al., 2022),
show promise to ease such problems, demonstrating robust
inference of a neuroscience model with 31 parameters. We
also only consider the case without noise or batch effects
observed in the model, which true biological systems have.
Future work will examine how SBIDOEMAN BMA scales
to larger models and how robust it is to noise and batch
effects in biological systems.

Computationally, we only used averaging of the mutual in-
formation among models to design optimal experiments.
Weighting each model’s mutual information by its respec-
tive marginal probability may lead to improved designs for
for the model with more evidence. We used a simple ensem-
ble method to evaluate the performance of iid models using
our algorithm, which allows us to measure uncertainty in
models’ predictions. Mixtures of Experts (MoEs) (Bengio
et al., 2013; Shazeer et al., 2017) have also shown promise
to improve training and can be combined with ensembling
methods to also perform uncertainty quantification (Alling-
ham et al., 2021). These methods could both improve per-
formance and uncertainty quantification in optimal designs
for biological models.



An Optimal Likelihood Free Method for Biological Model Selection for ICML-WCB 2022

Software and Data
We used the hydra configuration manager to track hyperpa-
rameters and seeds of experiments (Yadan, 2019). To per-
form SBI, we used the SBI software library (Tejero-Cantero
et al., 2020). The model marginal probability calculation
was performed using JAX and Distrax libraries (Bradbury
et al., 2018; Babuschkin et al., 2020).
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A. Algorithmic implementation

Algorithm 1 Bayesian Model Averaging SBIDOEMAN
1: Require: Simulators fi(d,θ), held-out true parameters θT , true simulator fT , number of simulations for MINEBED
NM , number of acquisitions for Bayesian optimization NA, number of simulations per LFI round NS , number of LFI
rounds NR, number of experiments NE , neural density estimator qϕ(x|θ), priors over models’ parameters p(θi), and
models’ prior probabilities p(Mi).

2: Return: Models’ approximate posterior p(θi|xo,d,Mi), models’ marginal probabilities p(Mi|xo,θi,d), and Bayes
Factor BF = p(M1)/p(M0).

3: Initialize a design d0 by random sampling and set d∗ = d0
4: Initialize N MINE neural network parameters ψ0, . . . ,ψN where N = |M|
5: Set proposals p̃{i}(θ) := p{i}(θ) forMi ∈ {M}Ni=1

6: for j = 1 : NE do
7: forMi ∈ {M}Ni=1 do
8: for k = 1 : NA do
9: for l = 1 : NM do

10: θ
{i}
k,l ∼ p̃

{i}
k,l (θ)

11: Simulate x{i}
k,l ∼ fi(d,θ

{i}
k,l )

12: Optimize MINE parameters ψi between simulated data and priors for the model by maximizing the mutual
information lower bound Î(d, ψ∗

i )

13: Î(d, ψ∗) = 1
N

∑
Î(d, ψ∗

i )

14: d∗ = d if Î(d, ψ∗) > Î(d∗, ψ∗)
15: end for
16: end for
17: end for
18: Observe simulated experimental condition xo = fT (d

∗,θT )
19: forMi ∈ {M}Ni=1 do
20: for k = 1 : NR do
21: for l = 1 : NS do
22: θk,l ∼ p̃{i}k (θ)
23: Simulate xk,l ∼ fi(x,θk,l)
24: end for
25: (re-)train q{i}ϕ ← argmin

ϕ
− 1

N

∑j

(x
{i}
k,l ,θ

{i}
k,l )

log q
{i}
ϕ (x

{i}
k,l |θ

{i}
k,l )

26: p̃
{i}
k+1(θ|xo) ∝ p{i}(xo|θ)p{i}k (θ) ≈ q{i}ϕ (xo|θ)p{i}k (θ)

27: (re-)train q{i}τ ← argmin
τ

DKL(q
{i}
τ (θ)||p̃{i}k+1(θ|x0))

28: Set p̃{i}k+1(θ) := q
{i}
τ (θ)

29: end for
30: train px(x|θ,xo,Mi)← argmin

ζ
− 1

N

∑j
(xl,θl)

log pu(f
−1(xo; ζ) + log|detJ(f−1)(xo; ζ)| where pu(u) ∼

N (0,1)

31: p(Mi|xo,θ,d) = 1− 1
2

(
1 + erf

(
f−1(xo;ζ)√

2

))
32: end for
33: BFj = p(M1)

p(M0)

34: end for

For the choice of hyperparameters, we used NM = 5000, NA = 5, NS = 1000, NR = 5, NE = 5, a SNLE qϕ(x|θ) density
estimator, starting box uniform priors for p(θ), and uniform priors for p(Mi). We evaluated 50 simulations at a time limit
of 10 hours. For the one-step model, the random choice had 14 simulations finish, equidistant had 26 simulations finish,
and SBIDOEMAN BMA had 15 simulations finish. For the two-step model, random choice had 21 simulations finsih,
equidistant had 25 finish, and SBIDOEMAN BMA had 16 finish.
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B. Proof of Proposition 2.1
We prove Proposition 2.1 using the following definitions.

Definition B.1. The marginal likelihood is the measure of evidence given a model and is defined as

p(xo|M) =

∫
p(xo|θ,M)p(θ|M)dθ

where the parameters θ of the modelM are integrated out. If the marginal likelihood is multiplied by the model prior p(M)
it then becomes model marginal probability p(M|xo).

Definition B.2. A normalizing flow is defined as a series of diffeomorphic functions, f , that map a base distribution, pu(u)
to a complex data distribution, px(x). Equation (5) shows the transformation from a base distribution to data distribution.
The inverse function f−1 will transform observed data x to the base distribution as f−1(x) = u, which could be a Gaussian
distribution. When training a normalizing flow with fixed base distribution parameters, this can also be seen as a generalized
version of the reparameterization trick and a form of variational inference (Rezende & Mohamed, 2015).

Definition B.3. The Cumulative Distribution Function (CDF) of a real-valued random variable X , if X is distributed
according to a Gaussian distribution, is defined as

FX(x) = P (X ≤ x)
= Φ(x)

=

∫ x

−∞

1√
2π

exp

(
−1

2
u2

)
du

=
1

2

(
1 + erf

(
x√
2

))

where erf() is the error function. A derivation of the Gaussian CDF can be found in Bishop (2006).

Definition B.4. The CDF gives a probability of points smaller than a point but we want to know how many points are larger
than the point in the Gaussian distribution, P (X > x) = 1− FX(x). This is the complementary CDF, or tail distribution,
and is helpful in the context of normalizing flows, where we are interested in determining the probability of simulated point
from our model x ∼ px(x|xo,θ,M) being greater than the observed data point xo. Thus, p(xo|M,θ) ≡ 1− FX(xo).

Using these definitions, we prove Proposition 2.1 as follows.

Proof. Starting from the definition of the marginal likelihood in Definition B.1, we can approximate the intractable likelihood
p(x|θ,M) using a normalizing flow trained by sampling u ∼ N (0,1), as by variational inference in Definition B.2, and
model parameters sampled θ ∼ qτ (θ) where qτ (θ) is the model’s posterior given observed data xo. Thus the marginal
likelkihood can be approximated as follows:

p(x|M) =

∫
p(x|θ,M)p(θ,M)dθ By Definition B.1

≈ px(x|θ,M) By Definition B.2 and θ ∼ qτ (θ|xo,M).

The last step can also be seen as a form of variational inference that employs the reparameterization trick for a simulator
fM as x ∼ px(x|θ,M,xo) ⇐⇒ x = fM(d,θ),θ ∼ qτ (θ|xo,M), assuming that designs d are known and using the
posterior inference of model parameters given a certain observed data point xo.

Using this approximation of the marginal probability distribution, we can find the probability that a point xo is within this
probability density function by converting to a Gaussian base distribution, pu(u), via variational inference. We find models’
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marginal probabilities as follows:

p(xo|M,θ) ≡ 1− FX(xo) By Definition B.4

= 1−
∫ xo

−∞
px(x|θ,M,d)dx

= 1−
∫ xo

−∞
pu(f

−1(x))|detJ(f−1)(x)|du By Definition B.2

∝ 1−
∫ xo

−∞
pu(f

−1(x))du

= 1− Φ(f−1(xo)) By Definition B.3

= 1− 1

2

(
1 + erf

(
f−1(xo)√

2

))
By Definition B.3.

We note that this data likelihood becomes the model marginal probability when multiplied by the model’s prior, p(M).

Remark B.5. While we achieved acceptable results by simplifying the change of volume from the data distribution px(x) to
the base distribution pu(u) in the third step, it remains to be seen whether there is improved performance in calculating
models’ marginal probabilities with this value.


