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Abstract
Successful leads in drug discovery are deter-
mined by sufficient knowledge of how the drug-
like molecule candidate interacts and potentially
forms a complex with the protein target. Protein-
ligand docking aims to predict the probable exper-
imental orientation as well as the binding affinity
needed to form a stable complex structure and
proves to be highly useful in applications such
as virtual high-throughput screening of candidate
drugs or binding target detection. Nevertheless,
the traditional docking algorithms are compu-
tationally costly. Recently, Stärk et al. (2022)
explored an SE(3)-equivariant geometric deep
learning model with promising speed-ups in or-
der of magnitudes. We present a methodology
for post-docking evaluation of the protein-ligand
complexes based on an assessment of the inter-
molecular interactions between the target and the
candidate molecule and use the interaction finger-
prints as a tool to investigate the deep learning
docking algorithms. We also demonstrate the ad-
vantages of incorporating interaction features in
the prediction of bioactivity.

1. Introduction
Protein-ligand docking explores possible binding poses of
the ligand to a given molecular target (Friesner et al., 2004;
Wang et al., 2016). With the good knowledge of the ligand
binding mode we can better predict either bioactivity or
determine the optimal binding affinity. Correctly predict-
ing the bio-activity of the molecule across a large spectrum
of protein targets increases the probability of successful
hits. Alternatively, reverse docking can be used to screen a
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drug candidate or existing drug against a large set of poten-
tial targets with applications such as side-effects prediction
(Sachdev & Gupta, 2020) or drug re-purposing (Kumar &
Kumar, 2019).

Classical docking algorithms either sample various confor-
mations of multiple ligand binding poses or explores the
ligand and protein surface complementarity. The quality of
the binding pose is evaluated by a scoring function. Due
to potentially burdensome computational cost, molecular
docking does not scale well to the screening of large chem-
ical libraries. It creates a computational bottleneck when
used in machine learning optimisation, making it infeasible
as a part of reward in the novel drug generation. The use of
a rigid receptor, which represents no induced fit or recep-
tor flexibility, and limitations of the scoring function and
force-field (Eberhardt et al., 2021) can negatively influence
the performance. An appropriate selection of the location
and size of the boundary box within which the docking is
performed is also important (Coleman et al., 2013). The
blind docking without a boundary box is significantly harder
because it necessitates binding site detection on the whole
protein target.

Representations of the intermolecular interactions as de-
picted in Figure 1 allows for more realistic modelling of
binding affinities (Da & Kireev, 2014). These fingerprints
have been used to compare docked ligands to a reference
structure, usually a protein-ligand complex structure deter-
mined by X-ray crystallography. In particular a protein-
ligand interaction fingerprint encodes the presence or ab-
sence of specific non-covalent interactions between a ligand
and the protein target at the binding pocket. Information
such as atom types on the ligand and protein end, interac-
tion type such as electrostatic interactions, Van Der Waals
interactions, hydrogen bonds, interacting residue and more
can be used to distinguish between interactions (Chupakhin
et al., 2014). The presence and strength of interactions is
extracted from the complex structure by measuring the dis-
tance and orientation of complementary chemical groups
such as ring centroids and lone electron pairs which must
be within a certain predefined interval.

The empirical post-docking filters make use of various types
of structureactivity information e.g. quantify how the known
ligands differ against the background decoys, the negative



Figure 1. Interaction Fingerprints: 1. Structure of Pamipexole (Cyan) bound to the pocket of the D3 subtype Dopamine receptor.
Interactions are highlighted in color in all figures (legend of interaction types on right of figure). 2. 2D representation of Pamipexole’s
interaction with the receptor 3. presence of interactions distributed to bins of fingerprint, which usually incorporates amino acid, interaction
and ligand information.

control molecules which do not bind with the target of in-
terest (Mysinger et al., 2012). To successfully predict the
molecule binding affinity and its strength, we need to first
determine whether the candidate molecule even binds to
the target as for decoys the assay values such as pKi are
experimentally non-measurable.

Deep learning has been extensively used in docking algo-
rithms, either in improving the scoring function directly
or learning on the generated poses and thus tackling the
issues with re-ranking or ex-post assessment. Most recently,
deep learning models are used to generate optimal docking
poses directly. The models are usually trained in supervised
learning manner on experimentally measured ligand-protein
complexes and heavily rely on the co-crystalised complexes
as a source of the training information. These needs to be
obtained experimentally and does not provide the comple-
mentary information about the decoys. Training models to
the docked poses or utilising the docking scores in the ma-
chine learning algorithm introduces a new source of errors
and uncertainty.

We present a methodology for post-docking evaluation of
the docked complexes based on protein-ligand atom con-
nectivity interaction representations such as the one used
in ECIF. We predict the docking poses of the complexes
using Equibind and use the predicted conformations as a
part of feature pre-processing for modelling bioactivity pat-
terns. We also demonstrate the efficiency of our approach
in prediction of the bioactivity.

2. Methods
To investigate the quality of the docked poses we define a
metric based on the ”Extend Circular Interaction Features”

(ECIFs) (Sánchez-Cruz et al., 2020). These are constructed
such that each atom in the molecule we encode according
the following criteria: atom symbol; explicit valence; num-
ber of attached heavy atoms; number of attached hydrogens;
aromaticity; and ring membership. The list of 22 protein
encoded atom types is combined with 70 ligand types based
on PDBBindv2016 and forms a bag of the most relevant
1540 atom type interactions. For a given radius, the atom
pair of the atom from ligand and the atom from protein are
considered as interacting whenever the L2 norm of their 3D
coordinates lies within the cutoff radius. For keeping fixed
length fingerprint we count all interactions from the bag of
1540 and drop those outside the bag. In our investigation
we take ECIFs for 10 different radii 1.5A(Amstrong), 2A,
2.5A, 3A, 3.5A, 4A, 4.5A, 5A, 5.5A and 6A. The value 1.5A
corresponds to nearly atomic bond while value 6A contains
various distant interactions. The interaction fingerprints are
stacked into a matrix with rows corresponding to radius cut-
offs. This allows to captures the changes in the interactions
as the atom neighbourhood expands. We refer to these as 2D
ECIFs. Figure 2 demonstrates that the specific amino-acid
sequence of the target characterises the representation of the
interactions.

ECIFs were design for a post-docking evaluation and re-
quire a conformer of the optimal structure. We explore the
docking approach introduced by (Stärk et al., 2022; Ganea
et al., 2021) based on the approximation of the binding pock-
ets and predicting the docking poses while using keypoint
matching and aligning through optimal transport and a dif-
ferentiable Kabsch algorithm. We use Equibind to predict
3D conformations of complexes from DUD-E (Mysinger
et al., 2012). DUD-E dataset contains mostly drug-like
molecules with molecular weight less then 500 and less



Figure 2. 2D ECIF: for each complex we compute interaction fingerprint with the radius cutoff taking values in 1.5A, 2A, 2.5A, 3A, 3.5A,
4A, 4.5A, 5A, 5.5A and 6A. The value 1.5A corresponds to nearly atomic bond while value 6A contains various distant interactions. The
interaction fingerprints are stacked into a matrix with rows corresponding to radius cutoffs. We visualise 2D ECIFs using t-SNE for 6
protein targets: dopamine receptor DRD3, estrogen receptors ESR1 and ESR2, HIV type 1 protase receptor HIVPR, tyrosine-protein
kinase SRC and vascular endothelial growth factor receptor VGFR2 together with corresponding ligands and decoys. The visible clustering
indicated that the specific amino-acid sequence of the target characterises the representation of the interactions.

then 20 rotatable bonds. We construct a metrics based on
2D ECIFs and investigate the relation between the interac-
tion metrics and root mean square errror between the ligand
conformation predicted by EquiBind and experimentally
measured one condition by the molecular weight, number
of rotatable bonds, drug-likeness and NHOH counts. This
motivates our post-docking evaluation with protein-small
molecules interactions (PEPSI): we take the Frobenius norm
of the difference of 2D ECIFs between two complexes and
regress them on the L2 norm of the 3D conformations of the
complexes. That way we capture the spatial aspect of the
error and inter-atomic interaction. We then order the values
according the desired chemical property, such as number
of rotatable bonds, logP, molecular weight or any relevant
chemical property of interest.

We further investigate whether the ECIFs are useful for de-
tection of bioactive molecules and decoys. Multi-task deep
learning is good fit for drug discovery problems as a natural
progression of quantitative structure-activity relationship
(QSAR) models (Geppert et al., 2010). The multi-task ar-
chitecture tends to better leverage the shared input represen-
tations while it is co-jointly trained to multiple tasks and
when trained on sufficiently large dataset it overperforms
the single-task methods(Ramsundar et al., 2015; 2017).

3. Experiments
The PDBbind database (Liu et al., 2017) is a benchmark
dataset of systematically annotated protein–ligand com-
plexes in the Protein Data Bank (PDB) with experimental
binding data. It has been updated annually since its first
public release in 2004. The latest release provides binding
data for 19k biomolecular complexes in PDB.

DUD-E (Mysinger et al., 2012), Database of Useful Decoys
- Enhanced, is a docking benchmark dataset. It consists of
a curated subset of ChEMBL(Gaulton et al., 2016), 102
protein targets with associated crystal structure and a total
of 20.000 ligands with known, measured activity at one of
these targets. Each of these ligands have 50 associated de-
coys - molecules with matched physiochemical properties
such as molecular weight and lipophilicity that are topologi-
cally distinct and expected to be inactive. These compounds
are selected from the ZINC database. The number of lig-
ands varies per different target. For our experiments we
sampled roughly the same number of decoys per each target
to construct a balanced dataset.

To assess the actives-decoys recognition task, we con-
structed the dataset of approximately 50 actives from
CHEMBL and we sampled a set of approximately 50 decoys
from DUD-E per each target.



Figure 3. PEPSI: RMSE (x-axis) plotted against Frobenius norm of difference between 2D ECIFs measured on complexes predicted by
Equibind and complexes measured experimentally (PDBBindv2020). Large values of Frobenius norm of ECIFs together with low RMSE
indicates that EquiBind fails for largely flexible molecules with low QED(drug-likeness) score. Sharp increase of Frobenius norm of 2D
ECIFs for small molecules and close to 0 RMSE indicates that Equibind introduces error into the prediction of the inter-molecular activity
of the complex.

To obtain the ECIFs we first use Equibind to obtained the
optimal docked poses for the complexes. Each ligand and
protein is processed with OpenBabel and all missing hy-
drogen atoms are added to the ligand. Additionally, each
protein goes through a hydrogen correction procedure using
REDUCE1. From the protein, we keep only the connected
components which within a 10A radius of any ligand atom.
We compute ECIFs for radius: 1.5A, 2A, 2.5A, 3A, 3.5A,
4A, 4.5A, 5A, 5.5A and 6A and fit 102 task multitask neu-
ral network classifier for each single radius with the MLP
architecture: [2048, 512, 256, 128, 32, 8], ReLu activation,
and dropout 0.2 on all layers. As a benchmark model for
a comparison we use the Random Forest Classifier (RF).
The results are reported in Table 1. Despite the fact the
RF lightly outperforms the multi-task NN on the unseen
CHEMBL data, we assume that this is due to the size and
drug-like character of the DUD-E dataset.

4. Conclusions and Discussion
We investigated the performance and the usability of the
Equibind model. The efficiency of the use outperforms
traditional docking tools. As Equibind aims to only alter
torsion angles of rotatable bonds while keeping bond angles

1https://github.com/rlabduke/reduce

and lengths fixed, the rotatable bonds constrain together
with the alignment of the structure creates issues for larger
and flexible molecules. Most of these molecules may most
likely not be the potential drug-like hits. As measured by
PEPSI, the Equibind also tends to fit the structures closer to
the protein with significantly larger number of interactions.
This introduces uncertainty which needs to handled when
used in the model pipeline. However there is degree of
uncertainty in the experimental data for particular atomic
distances either.



Metrics

Cutoff Model Accuracy Precision Recall AUC
1.5A MNN 0.623 0.586 0.651 0.625

RF 0.632 0.595 0.657 0.687
2.5A MNN 0.728 0.719 0.684 0.726

RF 0.740 0.735 0.692 0.860
3.5A MNN 0.806 0.826 0.740 0.802

RF 0.813 0.840 0.742 0.893
4.5A MNN 0.842 0.871 0.776 0.838

RF 0.847 0.890 0.766 0.925
5A MNN 0.854 0.883 0.793 0.857

RF 0.856 0.903 0.775 0.934
6A MNN 0.864 0.9 0.796 0.860

RF 0.868 0.92 0.784 0.94

Table 1. Actives-Decoys Recognition Task on CHEMBL Testset
Performance: we provide comparison of the multi-task NN classi-
fier with 102 task and Random Forest Classifier used as a bench-
mark. The features for the model are 1540x1 ECIFs counting
the interaction between the target and the ligand within the cutoff
radius reported in the first column.
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