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Abstract

Computational models starting from large ensem-

bles of evolutionarily related protein sequences

capture a representation of protein families and

learn constraints associated to protein structure

and function. They thus open the possibility for

generating novel sequences belonging to protein

families. Protein language models trained on mul-

tiple sequence alignments, such as MSA Trans-

former, are highly attractive candidates to this

end. We propose and test an iterative method

that directly uses the masked language model-

ing objective to generate sequences using MSA

Transformer. We demonstrate that the resulting

sequences generally score better than those gen-

erated by Potts models, and even than natural se-

quences, for homology, coevolution and structure-

based measures. They also reproduce well the

statistics and the distribution of sequences in se-

quence space of natural data.

1. Introduction

Designing new proteins with specific structure and function

is a highly important goal of bioengineering. Indeed, it

can allow to tune their stability or their biochemical proper-

ties, including their enzymatic activities, enabling important

medical applications. De novo or rational protein design,

which starts with target three-dimensional structures and

physico-chemical potentials, can generate proteins which

are not in a known family, but is restricted to small proteins.

Conversely, directed evolution allows for a local search of

sequence space, but remains limited to the vicinity of a

natural sequence.
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Generative computational models that build on the breadth

of available natural protein sequence data, and capture a

representation of protein families, now offer great alterna-

tives that can allow to sample novel sequences belonging to

protein families. In particular, Potts models (Figliuzzi et al.,

2018), and variational autoencoders (Hawkins-Hooker et al.,

2021a) have been shown to produce functional proteins.

Protein language models (PLMs) are deep learning models

based on natural language processing methods, especially

attention and transformers. They are trained on large ensem-

bles of protein sequences, and capture long-range dependen-

cies within a protein sequence (Elnaggar et al., 2021; Rives

et al., 2021). They are able to predict structure from a single

sequence in an unsupervised way (Rao et al., 2021a;b). The

great success of supervised protein structure prediction by

AlphaFold (Jumper et al., 2021) is partly based on the use

of transformers. It is therefore of strong interest to assess

the generative ability of PLMs, and recent works show that

this has high potential (Madani et al.; Johnson et al., 2021;

Ferruz et al., 2022).

Correlations in amino-acid usage between the columns of

multiple sequence alignments (MSAs) of homologous pro-

teins are important to generate functional synthetic proteins,

and the success of Potts models relies on these correlations.

PLMs that take MSAs as input are able to directly exploit

this covariation signal, and are thus particularly interesting

candidates for protein design. Thus motivated, we focus

on MSA Transformer (Rao et al., 2021b), a PLM which

was trained on MSAs using the masked language modeling

objective, without additional supervised training – by con-

trast to AlphaFold. We ask how the generative properties of

MSA Transformer compare to those of Boltzmann machine

DCA (bmDCA) (Figliuzzi et al., 2018; Russ et al., 2020), a

state-of-the-art generative Potts model.

2. Methods

We propose an iterative masking procedure (see Figure 1)

that directly uses the masked language modeling objective

iteratively to generate sequences using MSA Transformer.

Our algorithm, given an arbitrary MSA M of natural se-

quences, proceeds as follows:
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Figure 1. Iterative masking procedure to generate sequences

using MSA Transformer. We randomly mask each residue in the

input MSA with masking probability p = 0.1, use the model to

fill in masked entries, and iterate.

1. If necessary (for memory reasons), sample some se-

quences (i.e. rows) from M to obtain an input MSA

M′ of sequences picked uniformly at random.

2. Randomly mask each residue of M′ with masking

probability p = 0.1, otherwise leave it unchanged.

3. Feed the masked MSA to MSA Transformer, and fill

each masked entry with the token with highest proba-

bility (obtained from the output logits).

4. Repeat points 2-3 for I = 200 iterations.

For each natural MSA M, we repeat the procedure above

multiple times, sampling sequences each time from M with-

out replacement to obtain a different input MSA M′, until

all the sequences in M are used. Note that sequences re-

main aligned at all times during the procedure. Combining

the MSAs resulting from all these batches then yields a

synthetic MSA with the same depth as the natural one.

The values of p and I were chosen so that the properties of

the synthetic MSA have converged. Details are described in

our preprint (Sgarbossa et al.).

Datasets. To generate synthetic MSAs with MSA Trans-

former and bmDCA and compare them to their natural coun-

terparts, we consider the deep Pfam “full” alignments asso-

ciated to 14 protein domains (Figliuzzi et al., 2018).

3. Results

An iterative masking procedure allows MSA Trans-

former to generate novel sequences with high scores. Is

MSA Transformer able to generate sequences that are cred-

ible members of protein families? How do its generative

abilities compare to bmDCA, a state-of-the-art generative

Potts model which has been experimentally shown to gener-

ate functional proteins (Russ et al., 2020)? To address these

questions, we employed an iterative masking procedure to

generate synthetic MSAs from natural MSAs of 14 different

Pfam protein families (see (Figliuzzi et al., 2018)) with MSA

Figure 2. Comparison of homology, coevolution, and structure-

based scores between natural and generated sequences. For

each Pfam family in (Figliuzzi et al., 2018), we compare a natural

MSA from Pfam and two synthetic MSAs of the same depth,

respectively generated using MSA Transformer or bmDCA. For

each of three scores, we show its distribution among sequences in

each MSA. Higher score values are better. Top: For each Pfam

family, HMMER scores are divided by the highest score found in

the natural MSA. Middle: Statistical energy scores are defined

as minus the bmDCA statistical energies (shifted by the mean of

natural MSA scores, and normalized by their standard deviation).

Bottom: AlphaFold’s pLDDT confidence scores coming from 200

randomly chosen sequences from each MSA.

Transformer, as described in Section 2. We also generated

synthetic sequences by MCMC sampling from Potts models

inferred from these MSAs by bmDCA. For each protein fam-

ily, we obtained three different MSAs of the same depth: the

natural one, the one generated by our iterative masking pro-

cedure using MSA Transformer, and the one sampled from

the inferred Potts model. To characterize each sequence, we

consider three different scores. First, we assess the quality

of the generated sequences as homologs of the protein fam-

ily of interest via the HMMER (http://hmmer.org)

score of the hidden Markov model employed by Pfam to

retrieve natural homologs. Second, we consider a score that

accounts for coevolution between amino-acid sites, namely

the statistical energy score from the Potts model fitted on the

natural MSA. Third, we determine AlphaFold’s confidence

in its determination of the three-dimensional structure of

these sequences, via the predicted local-distance difference

test (pLDDT) score. All scores are such that higher val-

ues are better. Each one accounts for a different aspect of

proteins (scores described in detail in (Sgarbossa et al.)).

http://hmmer.org
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Figure 2 shows that, for all protein families considered, and

for these three different scores, the sequences generated by

MSA Transformer using our iterative masking procedure

have scores that are comparable and even better, on average,

than natural sequences. The opposite holds for sequences

generated by bmDCA. We tested this in a quantitative way

by employing the Kolmogorov-Smirnov test which confirms

our observations. Thus, MSA Transformer is a good candi-

date to generate synthetic sequences from protein families

via our iterative masking procedure.

Good scores are not restricted to synthetic sequences

similar to natural ones. How different are these synthetic

sequences from the natural ones? In particular, are those that

score best original sequences, or almost copies of natural

sequences? In Figure 3 we show, for one example protein

family (PF00153), the HMMER score and the DCA statisti-

cal energy score versus the sequence’s Hamming distance

to its closest natural sequence in the natural MSA. Trends

were similar for the other families we studied.

Figure 3. Homology and coevolution scores vs. distance to the

natural MSA, for protein family PF00153. We show contour

plots of the HMMER score and the statistical energy score (defined

as minus the DCA statistical energy, shifted by its mean value in

the natural MSA) versus the Hamming distance of each sequence

to the closest natural sequence (which is not itself, in the case of

natural sequences).

Figure 3 shows that MSA Transformer generates sequences

with variable distances to their closest natural sequences,

and that these distances are overall larger than those be-

tween closest natural sequences. By contrast, bmDCA

generates sequences which are often extremely different

from the natural ones. In addition, at a given distance

from the natural MSA, the MSA Transformer-generated

sequences often have higher HMMER scores and statistical

energy scores than the bmDCA-generated ones. Further-

more, the MSA Transformer-generated sequences featur-

ing the highest HMMER scores are those with large Ham-

ming distances to natural sequences, i.e. truly original ones.

Therefore, MSA Transformer-generated sequences are not

reaching good scores by overfitting and reproducing natural

sequences. The fraction of MSA Transformer-generated se-

quences which are identical to sequences in the input natural

MSAs is below 0.05% for all families considered, except

PF00595, PF00096 and PF00397 for which this fraction

is 4, 5 and 42%, respectively. These families feature low

diversity and short length.

Quantitatively, in Figure 3, the Pearson correlation between

HMMER scores and Hamming distances to closest natural

sequences are respectively ρ = 0.52 and ρ = −0.33 for

MSA Transformer and for bmDCA. Moreover, a strong neg-

ative correlation between the statistical energy score and

the Hamming distance is observed for bmDCA, while it

is much weaker for MSA Transformer. We observe these

trends for most protein families studied, and also when using

BLOSUM similarity scores instead of Hamming distances.

Sequences generated by bmDCA were already reported to

have overall worse statistical energy scores than their natu-

ral counterparts, and decreasing the sampling temperature

below 1 was proposed as a mitigating strategy (Russ et al.,

2020). However, we observed that this substantially de-

creased the fitting of first- and second-order statistics, and

only slightly improved HMMER scores (Sgarbossa et al.).

MSA Transformer captures well the distribution of se-

quences in sequence space. How are synthetic MSAs

generated by MSA Transformer and bmDCA impacted by

the heterogeneous repartition of natural sequences in se-

quence space? While natural protein sequences in a fam-

ily have evolved from a common ancestor along a phy-

logeny, synthetic sequences do not have a real evolutionary

history. However, as bmDCA and MSA Transformer are

trained on natural data, they can capture phylogenetic cor-

relations (Lupo et al.). Besides, inferred Potts models are

known to be impacted by phylogenetic correlations.

Figure 4. Distribution of sequences in sequence space, for fam-

ily PF00153. We show the distribution of one-hot encoded natural

and synthetic sequences projected in the subspace of the first two

principal components of the natural MSA.

To analyze the distribution of MSA sequences in sequence

space, we perform a principal component analysis of one-

hot encoded MSAs, and focus on the top two principal

components (PCs) of natural MSAs (Figliuzzi et al., 2018).

Figure 4 shows the distribution of sequences in the space

spanned by these top two PCs, for natural and synthetic
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Figure 5. Two- and three-body connected correlations estimated from generated MSAs versus the natural one, for family PF00153.

Relationships between connected correlations estimated from the MSA generated by MSA Transformer or bmDCA, and those estimated

from the natural MSA, are shown as binned scatter plots both for two-body (top row) and three-body (bottom row) statistics. To assess

finite-size effects, we include a null model (third column) obtained by splitting the natural MSA in half and comparing the statistics of one

half with those of the other. Pearson correlation coefficients ρ, and slopes of lines of best fit, are reported in each case.

MSAs, in the case of PF00153. We observe that MSA

Transformer is able to generate sequences with a distribution

in sequence space that is very similar to the natural one,

while bmDCA smoothes this distribution. This observation

is general across all the MSAs we considered. Note however

that the top two PCs explain a small fraction of the variance.

Higher-order statistics are better reproduced by MSA

Transformer, while lower-order statistics are better re-

produced by bmDCA. How well do synthetic MSAs

generated by MSA Transformer and bmDCA reproduce the

statistics of amino-acid usage observed in natural MSAs?

To address this question, Figure 5 shows a comparison of

second-order connected correlations for natural and syn-

thetic MSAs of family PF00153: MSA Transformer re-

produces these correlations less accurately than bmDCA.

This makes sense because Potts models are pairwise max-

imum entropy models constrained to match the one- and

two-body frequencies from natural MSAs, so bmDCA is

trained to reproduce these frequencies. Thus, this result is

in line with expectations. What about higher-order statistics

which are not fitting objectives of bmDCA? In Figure 5, we

show a comparison of third-order connected correlations for

PF00153: the MSA generated by MSA Transformer repro-

duces the higher-order statistics of the natural MSA better

than the one generated by bmDCA. These conclusions are

quite generic across the 14 MSAs we considered.

4. Discussion

We proposed an iterative masking procedure which directly

exploits the masked language modeling objective of PLMs

to generate sequences using the MSA-based neural language

model MSA Transformer. We found that these sequences

generally score better than natural ones and that those gener-

ated by bmDCA Potts models on three very different aspects,

namely homology, coevolution and structure-based scores.

Moreover, MSA Transformer-generated sequences better

reproduce the higher-order statistics and the distribution of

sequences in sequence space of natural data than bmDCA-

generated ones, which conversely better reproduces lower-

order statistics, consistently with its training objective.

Our results are highly promising for sequence generation by

MSA-based PLMs, and we hope that they will motivate fur-

ther studies, especially experimental tests. More generally,

our results reinforce the new promising “coevolution-driven”

protein design method based on exploiting sequences of

evolutionarily related proteins. This concept differs from

structure- and physics-based de novo design, and from the

new possibility to use supervised deep learning models able

to accurately predict protein structures (Jumper et al., 2021;

Baek et al., 2021; Chowdhury et al., 2021) for structure-

driven sequence generation. The coevolution-driven ap-

proach is intermediate between structure-based approaches

and directed evolution ones. It was recently experimen-

tally validated in the cases of bmDCA Potts models (Russ

et al., 2020) and variational autoencoders (Hawkins-Hooker

et al., 2021a). PLMs trained on multiple sequence align-

ments provide state-of-the-art unsupervised contact predic-

tion in tied row attentions, and capture phylogenetic rela-

tionships in column attentions (Lupo et al.). This makes

them ideal candidates to generate new protein sequences

from given families. However, contrary to Potts models and

variational autoencoders, they do not allow direct sampling

from a probability distribution over sequences. Here, we

demonstrated the power of a simple generation method di-

rectly based on the masked language modeling objective.

It differs from using a decoder in this context, which al-

lows autoregressive generation of sequences, but requires

training a full encoder-decoder model and learning a para-

metric function mapping an MSA to a distribution over

its sequences (Hawkins-Hooker et al., 2021b). We instead

directly employed the representation of protein families cap-

tured by the self-supervised model MSA Transformer to

generate sequences. More sophisticated sampling methods

could be considered (Goyal et al., 2021), but our minimal ap-

proach already gives very promising results. Starting from

large MSA-free models (Bileschi et al., 2022; Shin et al.,

2021; Madani et al.) is another promising direction.
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