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Abstract
De novo peptide sequencing from mass spectrom-
etry data has been proved as one of the promising
methods for the accurate identification of novel
peptides. Recently, deep learning has been ap-
plied to de novo peptide sequencing using mass
spectrometry data. Although numerous mass spec-
trometery dataset is publicly available, annotat-
ing a large amount of data is too expensive and
time-consuming. Therefore, we need a solution
for acquiring ms/ms spectra with the high quality
rather than a large number of them. By integrat-
ing active learning with deep learning, we can
reduce the cost of annotation. In this work, we
mainly focused on one of the state-of-the-art mod-
els, DeepNovo-DIA, which uses convolutional
neural networks to MS/MS extract features and
long short-term memory to learn the language
models of peptides. Instead of selecting spectra
randomly to train the DeepNovo-DIA model, we
utilized an active learning algorithm to acquire
the most informative spectra. We used random
selection as the baseline and compared it with
two other acquisition strategies. The experiments
showed that by integrating active learning with de
novo sequencing, we achieve better performance
compared to DeepNovo-DIA model for small an-
notated spectra.

1. Introduction
Personalized cancer vaccines, as promising cancer im-
munotherapy, can be developed based on identifying and
validating neoantigens. Neoantigens are peptides produced
from digested proteins that exist on the surface of tumor
cells, so patient-specific peptides on the cancer cells can be
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targeted for producing personalized cancer vaccines (Lynn
et al., 2020), (Qiao et al., 2020), (Sahin U, 2018). For iden-
tifying peptide sequences from tumor samples, we need a
powerful technique to enable sensitive peptide detection
with low abundance. Liquid chromatography-tandem mass
spectrometry (LC-MS/MS)-based proteomics is a power-
ful analytical tool for identifying and quantifying biologi-
cal molecules such as peptides and protein (Jensen, 2006),
(Beretta, 2007). Via LC-MS/MS, the enzymatically digested
peptides elute from the LC column one by one and the mass
spectrometer records mass spectra over time. The mass
spectrometer records the mass-to-charge ratio of the charged
peptides, termed the MS1 spectrum. Then it selects pep-
tides for fragmentation by using different approaches. The
mass spectra of the charged fragments MS2 are recorded at
the final step. Different approaches have been proposed for
selecting peptides to be fragmented to MS2. One of these ap-
proaches is data-dependent acquisition (DDA) (Tran et al.,
2017) that uses a narrow precursor mass to charge ratio
(m/z) windows which contain a single peptide for each MS2
spectrum. In contrast, data-independent acquisition (DIA)
partitions the entire mass to charge ratio (m/z) range of the
MS1 spectrum into wide intervals and considers all the in-
tervals. The goal of the data-independent acquisition (DIA)
approach is to analyze all peptides in the sample. After
acquiring MS1 and MS2 spectra containing sets of mass
to charge ratio (m/z) and intensity via LC-MS/MS exper-
iment, proper algorithms are required to interpret data to
meaningful information. There are two main approaches
for translating spectra to peptides composed of amino acid
sequences: i) database search engine that uses databases
containing known sequences, ii) de novo sequencing that
decodes data from scratch. De novo sequence methods try to
reconstruct the amino acid sequence a peptide is composed
of from scratch without searching in a database and any
prior knowledge of the amino acid sequence. Applying de
novo sequencing methods on DIA mass spectrometry data
for analyzing masses and inferring peptides is a challenging
task due to the complex mixture of spectra containing multi-
ple coeluting peptides. To interpret high multiplex spectra,
we need computational methods which consider all possible
combinations of peptide candidates for a given spectrum.
Deep learning models are good candidates for developing
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de novo sequencing to learn coeluting patterns. Neural net-
works can extract features from highly multiplex and noisy
DIA spectra and learn the language model of peptides (Tran
et al., 2019). To improve the DeepNovo-DIA as a de novo
sequencing approach based on neural networks, we utilize
the active learning (AL) algorithm to acquire the most infor-
mative spectrum instead of random selection. In this paper,
we combine an active learning algorithm with de novo pep-
tide sequencing enabled by a deep learning model. The
experiments show that by selecting less than half spectrum,
we can get close performance to DeepNovo-DIA model
with less annotated spectra.

2. Related Works
Due to the importance of de novo peptide sequencing in pro-
teomics, numerous computational methods have been pro-
posed (Chi et al., 2013), (Yan Y, 2014), (Yan Y, 2017), and
(Tschager, 2018). Deep neural networks to de novo peptide
sequencing proposed by (Tran et al., 2017) as DeepNovo
that outperforms the other proposed de novo sequencing al-
gorithms without searching databases. DeepNovo achieves
this by integrating Convolutional Neural Networks (CNNs)
and Long short-term memory (LSTM) to learn features of
MS/MS, fragments, and language models of peptides, re-
spectively. In 2019, DeepNovo was upgraded to identify
peptides from DIA MS data (Tran et al., 2019). CNNs
used to map precursor and fragment ion profiles to embed-
ding vector as encoder, and LSTM was used as decoder for
predicting the next amino acids. DeepNovo-DIA achieved
better performance compared to the other database search
methods (Bruderer et al., 2015), and (Ting, 2017). On the
other hand, integrating deep learning with active learning
enables processing high dimensional data plus automatic
feature extraction with selecting data points more efficiently.
The goal of this combination is to choose good data instead
of big data to reduce the annotation cost, especially in the
health and biology domain. Deep active learning algorithms
have been used in wide various domains and applications.
Applications in NLP such as question answering (Nabiha As-
ghar & Li, 2017), information extraction (Jungo Kasai &
Popa, 2019), (Maldonado & Harabagiu, 2019), and (Shard-
low et al., 2019), semantic analysis (S. Das Bhattacharjee
& Balantrapu, 2017), text classification (Bang An & Han,
2018), (Ameya Prabhu & Singh, 2019), machine translation
(Pei Zhang & Xiong, 2018), wearable device (SGautham
Krishna Gudur & Umaashankar, 2019), and (Hossain &
Roy, 2019), gene expression (Rania Ibrahim & El-Makky,
2014), in Electrocardiogram (ECG) signal processing (Han-
bay), in computer vision such as image classification, object
detection, video processing, semantic segmentation (bio),
(Xuhui Chen & Li, 2018), (Samuel Budd & Kainz, 2021),
(Deng et al., 2018), (Gal & Ghahramani, 2015), (Gal &
Ghahramani, 2016), and (Yarin Gal & Ghahramani, 2017).

3. Approach
In this work, We develop an active learning framework for
extending DeepNovo-DIA proposed by (Tran et al., 2019).
Through an active learning framework, the model could
learn from a small amount of spectrum. Unlike DeepNovo-
DIA which selects the spectra randomly, we utilize different
acquisition functions to select the most informative spectra.
In the following sections, 3.1 we used three datasets previ-
ously used by DeepNovo-DIA, 3.2 we demonstrate how we
integrate an active learning framework with de novo peptide
sequencing model. Finally, 4 we explain our experiment
results.

3.1. Dataset

We use the same DIA mass spectrometry dataset obtained
and used previously (Tran et al., 2019) to train and test our
model. The dataset used for training includes urine samples
from different subjects (Muntel). We used ovarian cyst (OC;
six subjects) as a validation set and evaluate on the previ-
ously used dataset of plasma sample (Ting, 2017).Before
feeding the data to the neural network, the first step is to
process the dataset to extract the required features. Each
feature contains information of a precursor including its
mass to charge ratio (m/z), charge, retention-time, and inten-
sity profile obtained from LC-MS map (Zhang et al., 2012).
Input files in the format of mgf containing each precursor
information include: ”spec-group”; ”mass-to-charge ratio”
(m/z); ”charge” (z); ”rt-mean”; ”scan”; ”profile”; ”feature-
area”; pairs of (m/z, intensity). In training mode, it contains
the peptides identified by the in-house database search for
training. “scans,” a list of all MS/MS spectra collected
for the feature as described above. The spectra’s IDs are
separated by a semicolon; “F1:101” indicates scan number
101 of fraction 1. The spectra’s IDs can be used to locate
the spectra in the MGF file “testingplasma.spectrum.mgf.”
“profile,” the intensity values over the retention-time range;
the values are “time: intensity” pairs and are separated by
semicolons; the time points align to the time of spectra in
the column “scans.” “feature-area,” the precursor feature
area estimated by the feature detection pairs of (m/z, inten-
sity) are collected from the mgf file based on the center of
retention-time and scan number for each precursor. The
closer spectra to the center of the precursor’s retention time
are selected because their fragment ion signals are stronger
to do the de novo sequencing. After extracting the pair
of signals for each precursor, we construct MS2 fragment
ions. Now, the prepared dataset including the precursor’s
features with its collected spectra is ready to lunch to the
DeepNovo-DIA model.
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Figure 1. DeepNovo-DIA model. Precursor ion features detected
by LC-MS map include mass to charge ratio (m/z), charge, ms1,
and retention time. MS1 and MS2 collected spectra are then fed
to the deep learning model. Ion-CNN learns and encodes the
MS1 and MS2 into an embedding vector. The amino acid chains
extracted by LC-MS are fed to LSTM model to learn the amino
acid language. Spectrum-CNN consisting two convolution and
max pooling layers used to initialize LSTM.

3.2. Methods

In this section, we illustrate the integration of an active
learning framework with de novo peptide sequencing. To
integrate active learning with DeepNovo-DIA, we use pool-
based methods to acquire the spectra that contain more
information rather than random selection. We utilize the
uncertainty strategies for measuring the informativeness of
spectra. In the following sections, first, we demonstrate
the DeepNovo-DIA model, then explain the active learning
algorithm, and finally, propose the combined framework of
active learning with DeepNovo-DIA.

3.2.1. DEEPNOVO-DIA

Figure 1 presents the architecture of DeepNovo-DIA which
enables de novo sequencing using neural networks (Tran
et al., 2019). DeepNovo-DIA model consists of encoder
and decoder to learn both features from MS1 and MS2
spectra and peptide languages. Since each peptide can be
represented as a sequence of amino-acid characters, we can
utilize the language models to learn the peptide language.
Like text in NLP, we can treat peptides as a text contain
meaningful information. By applying NLP language mod-
els we can decode the sequence of characters called peptide.
DeepNovo-DIA has three main modules, Ion-CNN for en-
coding MS1 and MS2 high dimensional input to a feature
vector, CNN spectrum with LSTM for decoding peptide lan-
guage and a module for combining the outputs of encoder
and decoder. Since DeepNovo-DIA is proposed for inter-
preting highly multiplexed DIA MS/MS spectrum where

fragment ions emerged from multiple peptides, for each
precursor, 5 spectrum vectors are collected. Each spectrum
vector is an intensity vector, where the index of each entity
is mass to charge ratio (m/z). This vector is feed to CNN
spectrum to be encoded for initializing the LSTM decoder.
To improve peptide accuracy, Focal loss is used instead of
cross entropy.

3.2.2. ACTIVE LEARNING

Active learning framework as a solution for reducing the
cost of annotating data can be considered as a smarter way
of selecting informative data points for annotation. For de-
veloping active learning, one of the most of important parts
is to define a measurement for measuring the informative-
ness of data points. Consequently, active learner aims to
achieve precise accuracy using as few annotated data points
as possible. From three scenarios that active learner queries
unlabeled data points including (i) membership query syn-
thesis (ii) stream-based selective sampling, and (iii) pool-
based sampling, we choose pool-based sampling because of
advantages over others (Settles, 2009). The informativeness
of data points can be measured by calculating their uncer-
tainty. More uncertainty about a data point is equal to be
more informative. Thus, it is more efficient to train a model
with most uncertain data points because they contain more
information. There are different methods for calculating
uncertainty, we choose two of the most popular with fewer
drawbacks: Margin Sampling chooses the data points from
the pool set with the lowest margin between the first and
second most probable labels under the model (cheffer &
Wrobel, 2011):

XM = argmin
x

Pθ(y
∗
1 |x)− Pθ(y

∗
2 |x)

y∗1 is the most probable and y∗2 is the second most probable
labels under the model θ. Through the margin selection, we
calculate the smallest difference between first and second
most probable labels. The intuition is that the larger the
difference, the more confident the model is for the predicted
labels. So, for selecting the most uncertain labels, we need
the least difference or margin. Another method is Maximum
Entropy known as the most popular strategy for measuring
uncertainty, chooses the points from a given pool set with
the maximum entropy(ZHAO, 2017), (Dagan & Engelson,
1995):

XE = argmax
x

−
∑
y

Pθ(yi|x)logPθ(yi|x)

Pθ(yi|x) is the probability that point x belongs to a class
of yi under the model θ, where yi is the ranges of all pos-
sible classes predicted by model θ. As we can see in the
Figure 1, this probability is the output of softmax layer
Pθ(yi|x) exp(xi)∑v

k=1 exp(xk)
, where x is obtained by concatenat-

ing extracted feature from Ion-CNN and LSTM models
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Algorithm 1 Active Learning for De novo peptide sequenc-
ing

Input: pool set of unlabeled MS/MS DIA data
ps = poolset, tdenovo = unlabeledtestset, vs =
validationset, ts = trainset,
k = 50, q = 0,max− q = 200
Initialization:
ts = RandomSpectraSelection (ps, k)
TrainDeepNovoDIA (ts, vs)
ps = ps− ts
repeat

for acquisitionF to AcquisitionFList do
probs− ps = TestDeepNovoDIA (ps)
uncertain−spectra=Select(acquisitionF, probs−
ps, k)
ts = ts+ uncertain− spectra
ps = ps− uncertain− spectra
q = q + k
TrainDeepNovoDIA (ts, vs)
DeNovoPepSeq (tdenovo)
TestDeNovoPepSeq

end for
until q < max− q

with the shape of (batch-size, 1050), and y is the probabil-
ity distribution with the shape of (batch-size, v), and v is
vocabulary size which is 26 here.

3.2.3. AL FOR DEEP DE NOVO PEPTIDE SEQUENCING

To integrate AL with DeepNovo-DIA as a state-of-the-art de
novo peptide sequencing model using neural network, we
develop the algorithm 1. The DeepNovo-DIA is initialized
with a set pool of unlabeled MS/ MS DIA data. To train
the model, the algorithm selects k random spectra from the
pool set containing MS/MS DIA mass spectrometry, and
queries their labels. After training the model with small
amount of data ts, we measure the performance of model
on unseen/unlabeled from pool set ps and generates a prob-
ability vector probs − ps used as the input of acquisition
function. Acquisition functions is the core of active learning
algorithm, in this work we select the most uncertain spectra
based on two mentioned strategies in the 2 and use random
selection as a baseline. In this work, we used margin sam-
pling and maximum entropy to acquire the most uncertain
spectra. After selecting the most uncertain spectra, the al-
gorithm moves them from pool set to train set, then train
the model with new train set again. The AL repeats this
process until it meets the stopping criteria. Here we set the
max number of query as stopping criteria which is equal to
200. Figure 2 illustrates the framework of combining active
learning with DeepNovo-DIA model.

4. Results
To evaluate the performance of the proposed framework, we
used accuracy as the same metric defined in DeepNovo-DIA
model. We compared the accuracy of two main acquisi-
tion functions with random selection as a baseline used by
DeepNovo-DIA. The amino acid accuracy is defined as the
ratio of the number of amino acids matched to the total
amino acid number in the real peptide sequence. The def-
inition for peptide level is the number of fully correctly
predicted the real ground truth peptide. Figure 3 and Fig-
ure 4 illustrate the average accuracy of three acquisition
strategies at the amino acid and peptide levels respectively.
Figure 3 shows the accuracy of amino acid over the number
of spectra selected using three different random, entropy,
and margin acquisition functions. In each iteration, 50 spec-
tra were selected by acquisition functions to train the model
incrementally. As we can see in both figures 3 and 4, margin
selection achieved better performance for all accumulated
selected spectra; in particular, for the first 50 selected spec-
tra, two uncertainty-based acquisition functions obtained
more than 40% higher accuracy at the amino acid level,
compared to the baseline. Thus, the experiments show that
the active learning algorithm using uncertainty-based acqui-
sition functions with small annotated spectra outperforms
the random acquisition function.

Figure 2. Active Learning framework for DeepNovo-DIA.

5. Conclusion
In this paper, We proposed an active learning algorithm inte-
grated with deep learning models (AL-DeepNovo-DIA) to
enable de novo sequence of the peptides with the less anno-
tated mass spectrometry data. Instead of training the model
on large, expensive annotated data, the proposed framework
can select the more informative spectra rather than random
selection. This informativeness is measured by uncertainty-
based strategies. The experiments showed that the proposed
AL-DeepNovo-DIA framework achieves better performance
for small numbers of labeled spectra. Among them, Margin
selection outperforms maximum entropy and random selec-
tion. By training the model with good data instead of big
data, we achieved performance close to the fully supervised
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Figure 3. Performance comparison for three different acquisition
functions of the proposed AL-DeepNovo-DIA framework at amino
acid level.

learning algorithm. The experimental results are promising
and encourage us to extend the framework by adding more
uncertainty strategies.
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