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Abstract

The recent years’ outstanding advancement in
deep learning has created a desire to apply these
algorithms ubiquitously, including partaking in
clinical decisions. However, recent discoveries in
adversarial vulnerabilities in neural network mod-
els are troubling. In this work, we examine ad-
versarial attacks against a key AI pathology task,
whole slide imaging classification. We demon-
strate TopK Tiles Attack, a novel form of adver-
sarial attack that leverages the attention mecha-
nism in a modern deep learning WSI classifica-
tion pipeline to cause massive classification error
with extremely minor and unnoticeable changes
to this input (≤.2% pixels perturbed by 3 RGB
values). We note the computational difficulties
in adversarial training under weakly-supervised
learning settings, proposing and experimenting
workarounds. We also observe phenomena such
as attention hijacking that call for more theoretical
work to bring WSI classifiers to clinical settings
under potential adversarial threats.

1. Introduction
Whole Slide Imaging (WSI) has grown into a very impor-
tant tool for clinical diagnosis (Melo et al.). Under pow-
erful digital microscopes, a slice of a tissue is digitized
at a ultra-high resolution, resulting in whole slide images
that capture detailed cell morphology of an entire slice of
tissue. Pathologists utilize the fine details of whole slide
imaging to perform diagnosis, teaching and telepathology
(Pantanowitz et al., 2011). Those diagnostic works are often
labor intensive and allude to certain specialized recognition
of visual patterns. In this regard, the rapid advancements
in deep learning models have reached human-level perfor-
mance in many visual pattern recognition tasks (He et al.).
Naturally, researchers have sought deep learning solutions
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to WSI-based diagnostic tasks.

Several deep learning pipelines have approach expert-level
accuracy (Campanella et al.; Lu et al.). Paige.AI’s model
of WSI deep learning assistance has received FDA approval
for clinical use (Ai & Gulturk). Without a doubt, deep
learning holds great promises, but to be trusted in high-
stakes situations requires demonstrated robustness against
exploits such as adversarial attacks. In an adversarial attack,
an instance of input is perturbed by a designed noise by a
small amount, with the aim of shifting model’s output by an
unreasonably large degree (Goodfellow et al.). Adversarial
attacks have been demonstrated to be a prevalent weakness
among landmark deep learning models (Madry et al., 2017).

A number of works have demonstrated adversarial attacks
on deep learning models for medical tasks (Hirano et al.).
Past works have also analyzed economic interests in adver-
sarial attacks upon medical AI (Finlayson et al.). Although,
adversarial attack does not happen in natural datasets, wide-
spread of AI pathology implies making expensive decisions,
paving motivations for the ’hacking’ of trusted AI systems.
It is in the interest of medical professionals, patients as well
as insurance providers to deploy deep learning models that
are reliably robust against such adversarial attacks.

There are two main branches of methods to tiling-based WSI
classifiers, weakly supervised learning (Lu et al.) and tradi-
tional multiple-instance learning (Kather et al.; Campanella
et al.). Both branches are based on the paradigm of divide
and conquer. First, a WSI is divided and filtered into smaller
tiles containing tissue imaging of a standard dimensions.
Then, from each tile is extracted a representation vector or
tile-level score. This step is necessary because the ultra-
high dimension of whole slide imaging renders performing
an entire forwarded pass, while maintaining gradient in-
formation, computationally infeasible. Via some multiple
instance learning method, this collection of extracted fea-
tures or scores are combined into a slide-level representation
or a slide-level label. While the exact implementation varies
from model to model, we observed that a prevailing shift in
method from a traditional multiple-instance learning imple-
mentation such as majority voting or one-cross-threshold
classifiers (Kather et al.), to weakly supervised learning
(Lu et al.; Shao et al., 2021) (Chen et al., 2022), where
the model learns to identify the most important tiles, and
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heavily leverage such tiles to make its decision.

In a recent study on adversarial attacks of MIL WSI clas-
sifiers (Laleh et al., 2022), a successful slide-level attack
against traditional MIL models requires perturbing a signifi-
cant proportion of tiles. We demonstrate in this study that
weakly-supervised models with learned tile importance al-
low for a far more extreme form of adversarial vulnerability.
We then explore and experiment various methods to defend
against such a style of attack, including computational tricks
to bypass computational difficulties of end-to-end adversar-
ial training with WSI data. Along the way, we also present
the phenomenon of attention hijacking and motivations for
partial adversarial training. Together, we demonstrate that a
complex multi-model pipeline can be adversarially attacked
attacked and defended.

2. Methodology

Figure 1. A: The original CLAM pipeline and the identification of
top k attended tiles. B: TopK attack where top 2 tiles are replaced
with adversarial tiles.

The primary attack target is the CLAM weakly supervised

learning pipeline. This pipeline uses a pretrained ResNet50
to perform feature extraction on tiles containing foreground
tissue. An attention module assigns an attention score to
each tile-representation. Weighted by softmaxed attention
scores, tile-level representations are combined into slide-
level representation. One of the target tasks for this work
is to perform lung cancer subtyping between slides of lung
squamous cell carcinoma (LUSC) and adenocarcinoma
(LUAD) using 1001 slides provided by The Cancer Genome
Atlas Program (TCGA). Specifically, we utilized a CLAM
author provided model for lung cancer subtyping as the
main attack target. We also use an author provided train,
validation, test split, such that all accuracy levels reported
are of the combined validation and test splits.

Algorithm 1 TopK Tiles Attack
y; a← clam(ResNet(tiles))

idx← topk(a[c]; k)

∇tiles[idx]← back propagation(y[target]; tiles[idx])

tattcked ← tiles[idx] + sign(∇tiles[idx]) ∗ e
return tattcked

We propose Topk Tiles Attack (algo. 1). The general frame-
work of this attack is to target the most influential k tiles
according to some influential metric inherent to the target
model. In CLAM, the influence metric is tile attention
scores. Specifically, this attack finds the top-k attended
tiles according to attentions scores of the target class. The
framework can be specifically implemented with a wide
choice of attacks on the by treating top-k tiles as variable
inputs and non-topk tile inputs as constants. We utilized
Fast Signed Gradient Attack in our implementation. This
algorithm takes two parameters, e for attack strength and k
for topk tile selection. We experimented this attack by vali-
dating against the adversarial TCGA lung subtyping dataset,
using various combinations of e and k.

It is desirable to minimize changes in attention scores caused
by adversarial attacks for several reasons. One reason is
maintaining the high influence of the perturbed top k tiles
on model decision. Another reason is to avoid the extreme
changes in attention scores we observed in Topk Tiles Attack
that can make an attack obvious to detection algorithms, to
be discussed in a later section. We implemented Attention
Compensation Attack, a secondary attack on the discrepancy
between adversarial attention and natural attention.

tac ← tattcked + sign(∇tattcked
La(�; tattcked; y)) ∗ f

where La(�; tiles[idx]; y) = (aattacked − a)2

In implementation, the gradients upon attacked tiles were
calculated via a forward pass of adversarial tiles (augmented
with natural non-topk tile representation) and attention loss
calculated againest the natural accuracy. We experimented
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with TopK Tiles attack with attention compensation where
e = f and e = f/2.

We also experimented with adversarial training as a defense
mechanism. Adversarial training is usually performed on
a single model using adversarial samples as data augmen-
tation. However, the CLAM pipeline is a combination of
two deep learning models, ResNet50 and weakly supervised
CLAM. Since both models are end-to-end differentiable, we
treat these as a combined model = CLAM(ResNet([tiles]))
that can be end-to-end trained via gradient descent. How-
ever, the reoccurring issue in performing WSI classification
arise where the repeated use of feature extractor makes
infeasible fitting this entire forward propagation on any
standard GPU. We circumvent this challenge using the two
augmented versions of adversarial training below.

Figure 2. two modes of adversarial training

The first is a partial adversarial training, where only the
later CLAM portion of the entire model is trained against a
dataset of tile representations with TopK Attack adversarial
augmentation. For each slide, we replace among the pre-
processed tile features the TopK tiles’ features with features
extracted from adversarial versions of these tiles.

The second is a full pipeline adversarial training where we
input only adversarial tiles to the ResNet feature extractor.
For each adversarial tile representation vector, this vector
replaces the representation of the natural tile. Under this
training setup, both the feature extractor and the CLAM
weakly supervised model are adversarial trained in an end-
to-end fashion, while avoiding the computational difficulties
arisen from repeated usage of the feature extractor.

3. Result and Discussion

Figure 3. Accuracy of CLAM against adversarial input of various
strengths, k = 10, lung cancer subtyping. Green bar is baseline

Figure 4. Accuracy of CLAM against adversarial input with vari-
ous number of tiles replaced per slide, e, f = 0.01

We demonstrate that with minimal changes in input data,
fewer than 20 tiles of on average 13255 tissue tiles per
slide, perturbed by 3 units in RGB values, the model loses
significant accuracy. One noteworthy observation is that
increased attack strength eventually causes decreased attack
effectiveness, because of loss in attention score, suggesting
some innate robustness in weakly-supervised learning. As
can be seen in Fig. 5 Fig. 6, When a single attacked tile
is isolated, the attack is difficult to recognize by human
eyes. Embedding such an attack among all features of a
slide would be extremely laborious for pathologists to rec-
ognize, even at high attack strengths that would be easily
recognized in other attack settings. The visual effect of
adversarial attack in Fig. 5 is made easier to recognize than
in practice, because the attack is centered and the crops are
of high magnification. We must consider that experienced
pathologists operate at low magnifications for a majority of
work routines.

Figure 5. Example adversarial slide embedded among natural
slides, e = 0.1 (25 RGB values)

We observed that in a majority of successful attacks, one or
several attacked tiles exhibit extremely high attention scores
(Fig. 7). We call this phenomenon attention hijacking.
While this phenomenon can explain the very high effective-
ness of Topk Tiles attack, it be a giveaway to adversarial
detection algorithms, due to out-of-distribution behaviors.
With a secondary attack in attention hijacking, however,
those extreme changes in attention scores are much alle-
viated. In this, we demonstrated that adversarial attacks




