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Abstract
Recent advances in the direct RNA sequencing
technology has changed the landscape of RNA
modifications study by facilitating computational
detection of modifications using statistical or ma-
chine learning approaches. Most of these tech-
niques require segmentation steps in order to align
Nanopore squiggles to the candidate sites and they
tend to produce large computational and storage
overhead by indiscriminately segmenting the en-
tire transcriptome. We introduce a segmentation-
free approach to detecting RNA modification by
directly extracting features from raw Nanopore
signals that correspond to sites of interests. We
further demonstrate the feasibility of our approach
by achieving competitive performance in m6A de-
tection against existing state-of-the-art methods.

1. Introduction
RNA modifications have been discovered since the 1950s(1;
2; 3) and have been found to play a prominent role in a
wide range of biological processes(4; 5; 6). Several meth-
ods exist to detect these modifications, most prominently
N6-methyladenosine (m6A)(7; 8; 9; 10; 11; 12; 13; 14),
pseudouridine (ψ) (15; 16; 17; 18), and N5-methylcytosine
(m5C) (19; 20; 21). These methods, while useful, require
specific antibody or chemical reagents as well as experimen-
tal expertise that is beyond the reach of most computational
labs. The recent development of direct RNA sequencing
technology by Oxford Nanopore(22) allows the sequencing
of native RNA molecules. This allows for computational de-
tection of RNA modifications. Direct RNA sequencing tech-
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Jonathan Göke <gokej@gis.a-star.edu.sg>, Alexandre Thiery
<a.h.thiery@nus.edu.sg>.

The 2022 ICML Workshop on Computational Biology. Baltimore,
Maryland, USA, 2022. Copyright 2022 by the author(s).

nology infers nucleotide content of a given RNA molecule
by making use of the electrical current generated as the
molecule passes through the pores. The process of inferring
the RNA sequence given the current information is called
basecalling and this involves training methods based on Re-
current Neural Networks (RNN) or Convolutional Neural
Networks (CNN)(23; 24; 25; 26) to predict a sequence of
four canonical nucleotides (G, A, C, T). The presence of a
modified nucleotide often results in a shift in the electrical
current which can be exploited for RNA modification detec-
tion. Nevertheless, due to the noisy nature of Nanopore raw
signal (squiggle), a segmentation step using either the soft-
wares Tombo(27) or Nanopolish(28) is often required
during the preprocessing step of many RNA modification de-
tection algorithms(27; 29; 30; 31; 32; 33; 34; 35; 36; 37; 38)
in order to match the raw signal features to candidate pre-
diction sites. These algorithms typically segment the en-
tire transcriptome, resulting in redundant storage space and
wasted computational resources from unused segmented
regions. Modifications such as m6A for example, mostly oc-
cur within 18 out of the 1024 possible 5-mer motifs(7; 8; 39)
while other modifications such as m5C or pseudouridine
only occur within segments containing the C or U nu-
cleotides. To address some of these shortcomings, we pro-
pose a segmentation-free approach to localize features cor-
responding to modified positions. Instead of performing a
segmentation pre-processing step over the entire transcrip-
tome, we perform a targeted feature extraction by matching
the similarity of each squiggle region to the target positions.
We demonstrate that our approach performs comparably
against other m6A classification methods. Furthermore, we
achieve this result by making use of the signal features from
the penultimate layer of a basecalling algorithm, which sug-
gests a possible future integration between basecalling and
modification detection.

2. Method
Our model takes in both sequence and raw signal to produce
read-signal representation for modification detection (Fig-
ure 1). Firstly, we run a basecalling algorithm on each raw
signal chunk to identify the squiggle segments containing
the query positions. Next, we identify positions associated
by each signal chunk by performing local alignment be-



tween each basecalled sequence and its associated transcript
using the Smith-Waterman algorithm(40) as implemented
by the python library parasail(41). Inspired by recent
work in database search(42), we apply scaled-dot product
attention(43) to assign similarity score between the query
positions and the high dimensional sequence output of the
second last layer of our basecaller. The signal-sequence
representation is then obtained by computing the weighted
summation along the high dimensional sequence output of
each signal chunk. Intuitively, the attention mechanism con-
centrates the representation on the squiggle elements that
strongly match the query positions. The signal-sequence
representation can then be used for modification detection
via a Multiple Instance Learning (MIL) attention mecha-
nism (44).

2.1. Basecalling

Recent version of basecallers are trained using sequence
based neural networks such as CNN or RNN combined with
a Connectionist Temporal Classification loss (CTC)(45).
Under this approach, the network takes in raw current infor-
mation and produces a sequence of probability vectors over
each possible nucleotide. The probability of observing a par-
ticular nucleotide sequence is then computed by summing
the probabilities of all possible paths through the sequence
of probability simplex that will yield the sequence.

Let xi ∈ RL be the i-th raw squiggle chunk of length
L. We associate this short signal chunk with nucleotide
sequence si = {G,A,C, T}Si and transcript zi =
(zi,1, zi,2, . . . , zi,nzi

) ∈ Rnzi . A perfect basecaller will
predict nucleotide sequence si given the raw squiggle chunk
xi. Furthermore, the nucleotide sequence si will then be lo-
cally aligned to the transcript zi in the sense that si,j = zi,k
for some k ∈ {1, . . . , nzi} and for j ∈ {1, . . . , Si}.

Let f : RL → RD×T be function parameterized by a neural
network that transforms the squiggle to a high dimensional
representation vector of length T and dimension D. For
this purpose, standard CNN and RNN neural architectures
can be used. Here we associate a probability distribution
for each of the T high dimensional representation over the
four nucleotides G, A, C, T and a gap character ε. The gap
character is removed during decoding step(46) and it allows
the network to produce variable length output just as the raw
signals can represent variable length nucleotide sequence.
The probability distribution at each time step t can then be
described as: {

πt
i

}
1≤t≤T

= (g ◦ f)(xi) (1)

Here g : RD×T → (∆5)
T is a neural network that

outputs the conditional probability over the 5 symbols
{G,A,C, T, ε} given f(xi). The notation ∆5 refers
to the probability simplex over 5 variables and πt

i =

(πt
i,1, . . . , π

t
i,5) ∈ ∆5 for all 1 ≤ t ≤ T .

The gap characters introduce many-to-one mapping between
the the possible path π over the sequence of probability sim-
plex (πt

i,1, . . . , π
t
i,5) and the true underlying sequence si.

The path GεAεCεT and GACεT where the character ε is
the gap character for example represent the same nucleotide
sequence GACT. As such, the probability of observing the
target sequence si is then computed as the sum of all pos-
sible sequences π with the gap character such that it is
decoded as si.

p(si) =
∑

π:B(π)=si

p(πxi) (2)

where B is a decoding function that removes the gap
characters from the predicted sequence. This sum can
be computed using dynamic programming and during
inference time, the predicted sequence ŷi can be de-
coded using beam search or Viterbi algorithm. We train
our own basecaller using the open source Bonito model
(https://github.com/nanoporetech/bonito) with sequence
ground truth obtained from Nanopolish eventalign(28).

2.2. Extraction of Positional Representation

After training a basecaller, we extract signal-sequence rep-
resentation h(xi, zi, j) that capture the signal information
from the read that matches the position j with respect to
transcript zi. In order to do this, we extract features repre-
sentation from the 10 flanking bases around the j-th position
[zi]j,K using a bidirectional LSTM R as R ([zi]j,K) ∈ RM .
Here we reason that the signal representation from f , the
second last layer of our trained basecaller, can be infor-
mative since it is trained to maximize the probability of
observing the underlying true sequence si. As such, we
extract the signal-sequence representation with respect to f
using the attention mechanism:

h(xi, zi, j) = (f(xi)WV )
T Softmax

(
f(xi)WKR ([zi]j,K)√

M

)
(3)

for query R ([zi]j,K) ∈ RM , key f(xi)WK ∈ RT×M and
value f(xi)WV ∈ RT×M . Here WK ∈ RD×M and WV ∈
RD×M are learnable parameters of the attention mechanism.
Intuitively, the attention concentrates the representation of
the signal value f(xi)WV on its sub-sequence that is the
most similar to the query position R ([zi]j,K).

2.2.1. DETECTING M6A MODIFICATIONS

Here we only update the parameters of the sequence net-
work R while keeping the basecaller as a feature extrac-
tor. Previous work(36) has cast m6A detection problem
as a Multiple Instance Learning (MIL) problem(47). Let



Figure 1. Overview of the model. The signal module comprises 3 CNN layers followed by 5 LSTM layers while the sequence module
comprises 3 bidirectional LSTM layers followed by 1 linear layer. The scaled dot product attention combines the output the two modules
to produce signal-sequence representation while the CTC decoder outputs sequence prediction from the signal representation. The MIL
attention layer takes in the signal-sequence representation to output modification probability

{xi,1,xi,2, . . . ,xi,Ni
} be a collection of distinct signal

chunks mapped to transcript z containing transcript posi-
tion i. Each xi,j can be associated with label yi,j ∈ {0, 1}
indicating whether each signal chunk contains m6A mod-
ification. However, we only have access to a single la-
bel yi ∈ {0, 1} representing the modification status of
the signal chunks collection instead of individual label
yi,j . Here we extract the signal-sequence representation{
h(xi,j , z, i)

}
1≤j≤Ni

for each signal chunk and combine
their representation following the Attention-based Deep
MIL framework(44)

h(xi, z, i) =

Ni∑
j=1

ajh(xi,j , z, i) (4)

where

aj =
exp

{
UT tanh

(
V Th(xi,j , z, i)

)}∑Ni

k=1 exp {UT tanh (V Th(xi,j , z, i))}
(5)

Here U ∈ RH×1 and V ∈ RD×H are learnable parame-
ters and aj measures the relative contribution of raw signal
chunk j in the collective representation h(xi, z, i). The rep-
resentation vector h(xi, z, i) can then be used as a feature
vector within a standard logistic regression classifier. The
complete model is trained end-to-end by minimizing the
cross-entropy loss with stochastic gradient descent.

3. Experiments
3.1. Dataset

HCT116 direct RNA Sequencing Data
The HCT116 cell line direct RNA sequencing data provided
by the SG-NEX project(48) and split the dataset on the gene
level into train, validation, and test sets. We use the training
set for basecalling and m6A detection training and use the
validation set for model selection. The m6A labels were
generated using the m6ACe-seq protocol(13) and we follow

the training procedure in (36) that restricts training sites to
those harbouring DRACH motifs.

HEK293T direct RNA Sequencing Data
The HEK293T cell line direct RNA sequencing data is pro-
vided by (32). The m6A labels for this dataset is generated
by m6ACE-seq(13) and miCLIP(12). We use this dataset
to validate both basecalling performance as well as m6A
classification performance. Similar to the HCT116 dataset,
we restrict our prediction to the DRACH sites.

3.2. Basecalling and Mapping Accuracy

Dataset Mean Acc Median Acc IoU
HCT116 91.2% 93.6% 88.1%

HEK293T 90.1% 93.5% 86.0

Table 1. Basecalling Accuracy and Intersection over Union on
HCT116 and HEK293T datasets

We first evaluate the accuracy of our basecaller and whether
it can identify positions within raw signal chunks correctly
by aligning the predicted sequence to its underlying refer-
ence label using Smith-Waterman algorithm(40). We mea-
sure the mapped accuracy as:

Accuracy =
Number of Matched Bases

Number of Reference Bases
(6)

In order to extract accurate feature representation, we need
to identify whether the position we wish to model exist
within a given read chunk. To do this, we align each the
predicted sequence ŷi to its reference transcript zi and ob-
tain a set of predicted positions L̂i spanned by read i. The
alignment step serves to correct small error in the prediction
and so we do not necessarily need a very high basecalling
accuracy to correctly identify the positions spanned by a
given signal chunk. As such, we also measure the Intersec-
tion over Union (IoU) of the predicted positions L̂i against
the ground-truth transcript positions Li represented in read
i. This is given by:



5-mer Motifs Model ROC AUC
(HCT116)

PR AUC
(HCT116)

ROC AUC
(HEK293T)

PR AUC
(HEK293T)

18 motifs

m6ARaw (ours) 0.930 0.385 0.817 0.319
m6Anet 0.926 0.451 0.838 0.366
Tombo 0.707 0.121 0.507 0.0857

EpiNano 1 0.776 0.206 0.710 0.240
EpiNano 2 0.788 0.133 0.725 0.182
EpiNano 3 0.781 0.176 0.722 0.213
EpiNano 4 0.764 0.235 0.704 0.227
EpiNano 5 0.736 0.167 0.670 0.170

12 motifs

m6ARaw (ours) 0.927 0.609 0.812 0.332
m6Anet 0.916 0.565 0.837 0.373
Tombo 0.759 0.296 0.504 0.099

nanom6a 0.787 0.364 0.719 0.203

4 motifs

m6ARaw (ours) 0.917 0.497 0.797 0.390
m6Anet 0.908 0.543 0.825 0.440
Tombo 0.767 0.280 0.515 0.166
MINES 0.792 0.340 0.708 0.326

Table 2. Performance comparison of m6ARaw against existing m6A detection methods

IoU =
L̂i ∩ Li

L̂i ∪ Li

(7)

On the HCT116 cell line, we manage to achieve a mean ac-
curacy of 91.2% and median accuracy of 93.6% while on the
HEK293T cell line, it achieves a mean accuracy of 90.1%
and median accuracy of 93.5%. Additionally, the model
achieves an average IoU of 88.1% on the HCT116 cell line
and 86.0% on the HEK293T cell line. This indicates that
the model can recognize the underlying sequence of each
signal chunk and its mapped alignment coincides strongly
with the ground truth label. Another way to improve the
mapping quality will be to consider the outputs from two
adjacent overlapping signal chunks, a strategy implemented
by the original Bonito basecaller(46), which we leave for
future work.

3.3. m6A Modification Detection

Here we demonstrate that our approach can yield high qual-
ity signal-sequence representation for RNA modifications
by by training the model to perform m6A detection based
on the extracted signal-sequence representation. We call
our approach here m6ARaw and compare the ROC AUC
and PR AUC on several partition of the HCT116 against
several existing methods(27; 30; 33; 49; 36) for m6A detec-
tion as detailed in (36). As we can see, on the HCT116 test
set, our methods perform comparably (ROC AUC: 0.930,
PR AUC: 0.385, ROC AUC: 0.927, PR AUC:0.609, ROC
AUC:0.917, PR AUC:0.497) against m6Anet (ROC AUC:
0.926, PR AUC:0.451, ROC AUC: 0.916, PR AUC:0.565,

ROC AUC:0.908, PR AUC:0.543) while outperforming all
other methods. We observe similar results in the HEK293T
cell line where our model outperform existing methods
(ROC AUC: 0.817, PR AUC: 0.319, ROC AUC: 0.812, PR
AUC:0.332, ROC AUC:0.797, PR AUC:0.390) and perform
comparably against m6Anet (ROC AUC: 0.838, PR AUC:
0.366, ROC AUC: 0.837, PR AUC:0.373, ROC AUC:0.825,
PR AUC:0.440). The results suggest that our approach can
produce informative signal-sequence representation to de-
tect m6A modifications and is competitive against existing
segmentation-based approaches.

4. Discussion
In recent years, we have seen an increasing number of com-
putational tools being developed to detect RNA modifica-
tions from direct RNA sequencing data. These tools have
facilitated a growing number of studies into RNA mod-
ifications but at the same time require a lot of compute
resources. Our study explores the possibility of stream-
lining such processes by avoiding segmentation steps and
integrating modification detection to basecalling, thereby
reducing the computational burden as well as storage space
requirements from running such analysis. We demonstrate
that this approach can produce informative representation
to detect m6A modifications, achieving competitive perfor-
mance against state-of-the-art method in m6A detection. In
the future we are planning to extend this approach to other
RNA modifications and we hope that this work can lay the
foundation for further study into representation learning in
the context of detecting RNA modifications directly from
raw signals.
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and SG-NEx consortium, “A systematic benchmark
of nanopore long read RNA sequencing for transcript
level analysis in human cell lines.” Apr. 2021.

[49] H. Liu, O. Begik, and E. M. Novoa, “EpiNano:
Detection of ma RNA modifications using oxford
nanopore direct RNA sequencing,” Methods Mol. Biol.,
vol. 2298, pp. 31–52, 2021.


