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Abstract

Recent years have seen significant efforts to-
wards creating machine learning approaches for
modeling molecular structure. In this work, we
investigate a class of architectures of particu-
lar interest—translation- and rotation-equivariant
transformers—across a number of important prob-
lems involving macromolecules with complex
three-dimensional geometry. In particular, we
build a representative model of this class that
achieves state-of-the-art performance on a num-
ber of tasks in the ATOM3D collection. Surpris-
ingly, we find that while equivariance is critical
for achieving high performance, attention does
not provide major improvements. We hope that
these insights, combined with the overall robust-
ness of the method, will help further machine
learning architectural research on problems in-
volving molecular structures. The model code is
available out-of-the-box at https://github.
com/drorlab/gert.

1. Introduction
Biomolecules such as proteins and RNAs adopt complex
three-dimensional (3D) structures that enable fundamental
biological processes, such as immune response and cell sig-
naling. Accurately modeling how structures induce these
phenomena is of interest for biologists and computer scien-
tists alike and additionally provides practical guidance for
drug discovery and design.

Recent years have seen a substantial increase in the num-
ber of catalogued macromolecular structures, in turn en-
abling the exploration of structural modeling through data-
intensive methods, such as machine learning. The greater
availability of structure predictions on individual desktops
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(Jumper et al., 2021; Baek et al., 2021) and data standardiza-
tion through works such as ProteinNet (AlQuraishi, 2019),
SidechainNet (King & Koes, 2020), MoleculeNet (Wu et al.,
2018) and ATOM3D (Townshend et al., 2021) further en-
abled the investigation of biomolecules and the benchmark-
ing of learning architectures, especially ones that operated
on structural information.

In parallel to the growth of annotated data, advances in
deep learning allowed for diverse architectural designs tack-
ling tasks ranging from predicting protein-protein interfaces
(Fout et al., 2017; Savojardo et al., 2020) or ligand bind-
ing affinities (Gomes et al., 2017; S Heck et al., 2017), to
modeling mutation stability (Cao et al., 2019) or inverting
the folding problem (Ingraham et al., 2019; Strokach et al.,
2020; Hsu et al., 2022). This generation of architectures was
largely inspired by the success of 3D convolutional neural
networks, and later by the development of graph machine
learning and the attention mechanism (Vaswani et al., 2017).

Learning architectures are able to better capture data when
transformation structures of the problem domain need not
to be learned. Such inductive bias can be implemented by
constraining the representations and their interactions to
satisfy symmetric properties of the domain. A model is
equivariant to a specific transformation T if its produced
representations behave cohesively with the action of T . Eu-
clidean networks are models that implement roto-translation
equivariance, and were demonstrated to achieve state-of-the-
art results in molecular tasks (Eismann et al., 2020; Jing
et al., 2021). Graph attention was incorporated in those
networks (Fuchs et al., 2020; 2021) and similarly indicated
competitive results.

In this work, we develop and extensively benchmark a
rotation- and translation-equivariant transformer architec-
ture for solving tasks on macromolecular structures. We
call the model GERT, which stands for Geometric Encoder
Representations for Transformers. This model is constructed
from components introduced in (Fuchs et al., 2020) and
(Thomas et al., 2018). In the same way that BERT (Devlin
et al., 2018) provided embeddings for language, GERT rep-
resents an effort to provide embeddings for macromolecules.
The model operates on individual atoms to construct these
embeddings and can extract structural information at a finer
resolution than residue-based models. We show that our ge-
ometric deep learning algorithm is robust over a broad range
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of relevant tasks and achieves state-of-the-art or competi-
tive results in benchmarks from ATOM3D; in other words,
a single consistent set of GERT encoder hyperparameters
yields performance at a level across tasks that is competitive
with, if not better than the benchmarks. Moreover, we assess
equivariant transformer components on molecular structure
and show that equivariance is crucial towards model per-
formance while attention is not as important, and provide
initial evidence advocating for usage of structural models
over sequence-based models. Overall, our work shows how
to effectively learn on structural data and contributes tools
for solving biomolecular problems.

2. Methods
2.1. Architecture

We design our architecture to operate over atomic labels
and their 3D positions. The model (Figure 1) consists of
two stages: an encoder component aimed at constructing
a structural representation; and a task-specific head model
that transforms these representations into the correct output
for prediction. We use the same encoder architecture across
all tasks, while the task-specific head varies from task to
task based on the required output format. The encoder is
specified by a rotation order parameter (Geiger et al., 2020);
variants of the model with higher rotational orders are better
for modeling higher angular resolution.

The encoder layer consists of alternating equivariant atten-
tion and equivariant convolution layers. The equivariant
attention layers are equivalent to (Fuchs et al., 2020) and
are computed over each atom in the region of interest in the
molecule. The query matrix is generated by a linear trans-
formation of the activations of the previous layer and the
key matrix is generated by another equivariant convolution.
The equivariant convolution layers are similar to the atten-
tion layers, but with the attention weights all held constant,
which reduces them to the convolution layers described in
(Thomas et al., 2018). These layers increase the capacity
of the model to capture atom-atom interaction terms, a key
driver of molecular structure.

Due to memory limitations, we are not always able to en-
code whole macromolecules in GERT at the atom-level, so
we elect to focus on a region of interest for each macro-
molecule. For example, if we are interested in interactions
happening at a certain amino acid in a protein, we focus on
that residue’s α-carbon and use only the atoms in the spher-
ical region with radius R from the central α-carbon as our
input signal. For some tasks, such as the residue deletion
task, we represent the macromolecule at the residue level
by preparing one atom (usually the α-carbon) per residue to
pass as input into the model.

Figure 1. The GERT architecture. An encoder operates over three-
dimensional coordinates and atomic labels to produce structural
representations. These embeddings are fed into task-specific heads
for direct supervised learning on different tasks. Encoder and
decoder algorithms are described in more detail in Appendix A.

2.2. Datasets

We use the ATOM3D dataset (Townshend et al., 2021), a
collection of 3D molecular tasks and benchmark GERT on
all seven ATOM3D tasks that involve macromolecules. The
datasets are split into training, validation and test sets by
sequence identity. Data and training splits are described
more thoroughly in Appendix B.

2.3. Training

One advantage of using GERT is that the architecture has a
single set of encoder hyperparameters specifying the archi-
tecture, which is robust across all different tasks we experi-
mented with (maximum rotation order of 4, 1 attention head,
1 encoder layer, 1 dense layer, and a consistent radial basis
model used in the convolutions). For all tasks, we use the
Adam optimizer (Kingma & Ba, 2014) and an initial learn-
ing rate of 1× 10−4. Task-specific heads necessarily vary
based on the shape of the latent space representation (see Ap-
pendix A). The consistent configuration makes GERT easy
to use out of the box for new tasks. The only differences
between tasks are the number of training epochs. Training
time is on the order of days for the largest ATOM3D datasets
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such as PIP with a single NVIDIA TITAN Xp GPU node due
to computational limitations, because the high memory de-
mand of equivariant representations restricts batch size to
one structure at a time. With increased computational re-
sources, we expect that training time can be reduced to just
a few hours.

3. Results and Discussion
3.1. GERT is robust across many macromolecular tasks

To test our architecture, we evaluate GERT on all of the
macromolecular datasets in ATOM3D and compare it to
existing benchmarks. Table 1 summarizes the results of the
experiments, benchmarking GERT against 3DCNN, GNN,
and ENN (Anderson et al., 2019) reference architectures.

Many architectures are specifically engineered for a subset
of macromolecular tasks, so they will perform well on those
tasks and poorly on others, but GERT consistently has strong
performance across all of the macromolecular tasks. The
model outperforms the existing benchmarks on PIP (0.932
AUROC/0.891 on DB5) and MSP (0.642 AUROC) – both
protein-protein interaction tasks – and delivers strong results
consistently across all tasks. To the best of our knowledge,
there is no other existing model that outperforms GERT
on the protein interaction prediction (PIP) task. Even for
tasks where GERT is not significantly out-performing all
reference architectures, it is commonly still competitive
with, if not exceeding, the best benchmark.

Additionally, for certain data-limited datasets such as MSP
(only 4148 total mutant structures), some models, such as
the 3DCNN, do not perform significantly better than random
guessing (0.574± 0.005 AUROC), while other models such
as the Cormorant ENN have unstable performance that is
impacted by the initialization. GERT is more robust to
random initialization compared to these baselines (0.642 ±
0.029 AUROC). This suggests that the model is helpful even
on data-limited tasks. Since biological data is often scarce in
nature, it is important to have data-efficient models, e.g., by
explicitly encoding underlying physical symmetries. GERT
is one such architecture and it works well on biomolecular
systems in various contexts, even in regimes where data is
not abundant.

3.2. Equivariance is crucial, but attention is
interchangeable with convolutions

We investigate how the different components of the GERT
architecture boost performance. In additional experiments,
we test GERT across all macromolecular ATOM3D datasets
while varying the maximum rotation order. Then, we per-
form the same set of experiments again, removing the at-
tention layer in GERT. Throughout the experiments, we see
that increasing the maximum rotation order significantly

helps performance, but the attention layer does not provide
a significant boost (Figure 2). We attribute this behavior
to the convolutions used by the GERT architecture, which
might be an apt substitute for attention since it also allows
for interaction terms between molecules. This suggests
that equivariant models that have weights dedicated to char-
acterizing inter-atomic interactions perform similarly, and
performance does not depend on how those weights are
organized (e.g., in the convolution, or in attention).

Figure 2. Attention and equivariance ablation study. The trend is
that the aggregate task performance metric (an median of nor-
malized per-task performances) increases with maximum rotation
order and is not significantly affected by the presence of attention.
Error bars are ± standard error. See Appendix C for details.

Our experiments on rotational orders indicate that perfor-
mance increases significantly between maximum rotation
orders 2 and 3 and then improves only marginally with
higher orders than 3. This allows an assessment of whether
the increase in performance is worth the additional effort in
model complexity and training time. Since the size of the
model increases quadratically with the maximum rotation
order, it can be more practical to train a model of order 3
when resources are expensive or limited.

A non-equivariant version of our transformer performs
worse than the equivariant transformer on all but one task
(LEP). In this task, we had to cut down the maximum radius
by 20% for the equivariant model due to memory limita-
tions. The generally higher performance of the equivariant
model suggests that having built-in understanding of ba-
sic physical symmetries improves prediction quality. The
model can then learn additional information from the data
beyond these symmetries.

To test the hypothesis that attention layers and equivariant
convolutions largely served the same purpose of providing
inter-atomic terms in the model, we built a similar non-
equivariant version of GERT that does not use the equivari-
ant convolutions, and similarly compared the performance
of this model with and without the attention module in some
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Table 1. GERT Performance on ATOM3D (Townshend et al., 2021) macromolecular benchmark tasks with standard deviations reported
over three replicates, relative to baselines. Metrics are labeled with ↑ / ↓ if higher/lower is better, respectively. Results are reported as
mean ± standard deviation over three training runs.

Task Target Metric 3DCNN GNN ENN GERT

PSR GDT-TS mean RS (↑) 0.431 ± 0.013 0.411 ± 0.006 — 0.279 ± 0.018
global RS (↑) 0.789 ± 0.017 0.750 ± 0.018 — 0.605 ± 0.017

RSR RMSD mean RS (↑) 0.264 ± 0.046 0.234 ± 0.006 — 0.236 ± 0.053
global RS (↑) 0.372 ± 0.027 0.512 ± 0.049 — 0.318 ± 0.228

PIP contacts AUROC (↑) 0.844 ± 0.002 0.669 ± 0.001 — 0.891 ± 0.005

RES res. type accuracy (↑) 0.451 ± 0.002 0.082 ± 0.002 0.072 ± 0.005 0.168 ± 0.005

MSP stab. incr. AUROC (↑) 0.574 ± 0.005 0.609 ± 0.011 0.574 ± 0.040 0.642 ± 0.029

LBA pK RMSE (↓) 1.416 ± 0.021 1.601 ± 0.048 1.568 ± 0.012 1.453 ± 0.024
(30%) global RP (↑) 0.550 ± 0.021 0.545 ± 0.027 0.389 ± 0.024 0.549 ± 0.010

global RS (↑) 0.553 ± 0.009 0.533 ± 0.033 0.408 ± 0.021 0.558 ± 0.008

LEP act./deact. AUROC (↑) 0.589 ± 0.020 0.681 ± 0.062 0.663 ± 0.100 0.617 ± 0.054

toy experiments with smaller versions of the model (hidden
dimension 32). The non-equivariant GERT model with 4 at-
tention heads achieved a mean global RS of 0.159 ± 0.010
on PSR, while the non-equivariant GERT without attention
only achieved a mean global RS of 0.146 ± 0.004. This
difference in performance suggests that in regimes where
the model is stripped of all other inter-atomic interactions,
attention can be slightly helpful, especially on protein tasks
like PSR where the relative atom locations are important in-
dicators of structure. However, in general, most models will
already have some built-in inter-atomic terms, and we were
not able to find a regime where the presence of attention
consistently and significantly boosted model performance.

3.3. Comparing structural models to sequence-based
models

One open question in machine learning is whether geo-
metric/structural models are viable alternatives to sequence
models for macromolecular modeling. Primarily, some of
the ATOM3D tasks (and many other important tasks aside
from ATOM3D) can’t be addressed in a meaningful way
with sequence-based models. For example, PSR and RSR
involve scoring different structural models with exactly the
same sequence. Additionally, we benchmarked a standard
language model, ESM-1b (Rives et al., 2019), with layer
size 256 on PIP and compare the results to GERT, and the
language model achieves across 10 trials an DB5 AUROC
of 0.850± 0.082, while GERT achieves a DB5 AUROC of
0.891±0.005. This result shows that even for tasks like PIP
where language models are useful models, structural models
like GERT still appear to edge them out in performance.
Further experimentation is necessary to show that this holds
in general; that is, in scenarios where the atomic structure is
available, there is merit to favoring a model that operates on
that structure over a sequence-based model.

4. Conclusion
In this work, we demonstrate the broad applicability of
equivariant transformers to molecular tasks, covering tasks
involving macromolecular structure, function, interaction,
and design. These equivariant transformers have robust
hyperparameters and architecture, as nearly identical con-
figurations are applicable to a variety of tasks. This work
represents a meaningful step towards a practical out-of-the-
box machine learning model for molecular tasks. The si-
multaneous generalizability and predictive power contained
in this class of models can have large implications on many
high-impact problems in structural biology.

We benchmark our GERT equivariant transformer across
various datasets and compare it to standard architectures
such as the GNN, 3DCNN, and other equivariant neural
networks. We showed that GERT is able to achieve perfor-
mance comparable, if not better than state-of-the-art from
other architectures on many tasks. Even on tasks where
GERT is not the strongest model, it is still competitive; this
consistency across the space of macromolecular tasks is
unique. Additionally, we performed ablation studies to un-
derstand what the contributors are to the model performance.
Our results show that having the built-in notion of physi-
cal symmetries is a major contributor to the state-of-the-art
performance achieved in some tasks, while the attention
module is often unnecessary.

In future work, we hope to explore the possibility of conduct-
ing transfer learning with our current architecture. Since
GERT already generalizes very well to a variety of tasks, it
would be interesting to study whether or not GERT can be
pre-trained on a data-rich task first, to improve performance
on a data-limited task if trained on a data-rich task first, as
the latter tend to be quite common in biology.
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A. GERT Algorithms

Algorithm 1 GERT Encoder
Input: Positions and atom types (P,E) ∈ Rn×3 × Rn×F

Output: Latent space representation X ∈ Rn×d

n is the number of atoms in P ; F is the number of possible discrete atom types; d is the encoder representation dimension;
nH is the number of attention heads.
function Encoder(E,P ):
X ← Convolution(E,P ) ∈ Rn×d

for each encoder layer:
U ← Concat(Head1(X,P ), . . .HeadnH

(X,P )) ∈ Rn×d×nH

V ← U , summed along the last dimension ∈ Rn×d

X ← X + Convolution(V, P ) ∈ Rn×d

T ← X ∈ Rn×d

for each dense layer:
T ← Convolution(T, P ) ∈ Rn×d

X ← X + T ∈ Rn×d

return X ∈ Rn×d

Algorithm 2 Task-Specific Head for LBA, PSR, RES, RSR
Inputs: Positions and latent space representation (P,X) ∈ Rn×3 × Rn×d

Output: Task-specific response X ∈ R
n is the number of atoms in P ; d is the encoder representation dimension; W1 and W2 are weight matrices.
The Norm(·) operation takes an L2 norm across each rotation order and concatenates them for the output.
function Task-Specific Head(X,P ):
X ← Convolution(X,P ) ∈ Rn×d

X ← Norm(X) ∈ Rn×d′

X ← X , summed along the first (atom) dimension ∈ Rd′

X ←W2 · LeakyReLU(W1X) ∈ R
return X ∈ R

Algorithm 3 Task-Specific Head for LEP, MSP, PIP
Inputs: Positions and latent space representation (P1, P2, X1, X2) ∈ Rn1×3 × Rn2×3 × Rn1×d × Rn2×d

Output: Task-specific response X ∈ R
n1 and n2 are the number of atoms in P1 and P2, respectively; d is the encoder representation dimension; W1 and W2

are weight matrices.
The Norm(·) operation takes an L2 norm across each rotation order and concatenates them for the output.
function Task-Specific Head(X1, X2, P1, P2):
X ← Concat(X1, X2) ∈ Rn1+n2×d

P ← Concat(P1, P2) ∈ Rn1+n2×3

X ← Convolution(X,P ) ∈ Rn1+n2×d

X ← Norm(X) ∈ Rn1+n2×d′

X ← X , summed along the first (atom) dimension ∈ Rd′

X ←W2 · LeakyReLU(W1X) ∈ R
return X ∈ R

B. ATOM3D Tasks Descriptions
Protein Structure Ranking (PSR). This dataset is comprised of the data from the past 18 years of the CASP competition.
The task is a regression task on predicting the Global Distance Test-Total Score (GDT-TS), and structures are split by
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competition year.
RNA Structure Ranking (RSR). This dataset is comprised of the data from the first 21 released RNA puzzle challenges.
The task is to predict the root mean squared deviation (RMSD) from the ground truth structure, and structures are split by
competition year.
Protein Interface Prediction (PIP). The training set is the Database of Interacting Protein Structures (DIPS), and the test set
is Docking Benchmark 5 (DB5). The task is to predict whether two amino acids will come into contact given that their
respective proteins are bound to each other, and we try to maximize the AUROC over this task. Protein complexes are split
by sequence identity at 30%.
Ligand Binding Affinity (LBA). The data is the PDBBind database (see (Townshend et al., 2021) for details), and we predict
− log(K), where K is the binding affinity of the protein-ligand complex in molar units. Protein-ligand complexes are split
by protein sequence identity at 30%.
Ligand Efficacy Prediction (LEP). The dataset consists of proteins with both known “active” and “inactive” states along with
527 small molecules with known activating or inactivating function with the proteins. The task is to predict whether or not a
given molecule bound to the protein will be activating or not. Complex pairs are split by protein.
Residue Identity (RES). The data consists of atomic environments around selected residues from the PDB, and the task is to
predict amino acid identity given the surrounding atomic environment. Residue environments are split by domain-level
CATH protein topology class.
Mutation Stability Prediction (MSP). The data consists of pairs of structures, where one element is a protein and the other is
the protein with a single point mutation. The task is to predict whether the stability of the complex increases as a result of
the mutation. Protein complexes are split by sequence identity at 30%.

C. Aggregate Task Performance
In this section, we define the aggregate task performance metric z̃m for a model m. Consider a set of T tasks and M models.
Let µtm and σtm be the mean and standard deviation on the associated metric across replicates for model m on task t. Let
µt and σt be the mean and standard deviation of the set {µtm : 1 ≤ m ≤M}; that is, the mean and standard deviation of
the mean model performances across a task t. We can compute a task-normalized score:

ztm =
µtm − µt

σt

Then, we take the median of task-normalized scores across tasks to obtain our aggregate task performance metric for a given
model:

z̃m = Median({ztm : 1 ≤ m ≤M})

Assuming that the z̃m come from a normal distribution and that the µtm are independent random variables, the standard
deviation sm of z̃m can be approximated by:

sm =

√
π

2

(
1

T

√∑
t

σ2
tm

σ2
t

)

And the standard error sem:
sem =

sm√
T

We use this metric in Figure 2, where M = 6 models (every combination of (lmax, attention) in {2, 3, 4} ×
{attention, no attention}) and T = 7 tasks (all tasks in Appendix B). The metrics used are RS for LBA; AUROC for
LEP, MSP, and PIP; accuracy for RES; and per-target RS for PSR and RSR.



Euclidean Transformers for Macromolecular Structures

D. Non-Equivariant GERT Performance

Table 2. Comparison of GERT and non-equivariant GERT over (Townshend et al., 2021) macromolecular benchmark tasks with standard
deviations reported over three replicates, relative to baselines. Metrics are labeled with ↑ / ↓ if higher/lower is better, respectively. Results
are reported as mean ± standard deviation over three training runs.

Task Target Metric GERT Non-Equivariant GERT

PSR GDT-TS mean RS (↑) 0.273 ± 0.008 0.077 ± 0.007
global RS (↑) 0.600 ± 0.021 0.234 ± 0.011

RSR RMSD mean RS (↑) 0.236 ± 0.053 0.207 ± 0.008
global RS (↑) 0.318 ± 0.228 0.439 ± 0.037

PIP contacts AUROC (↑) 0.891 ± 0.005 0.751 ± 0.002

RES res. type accuracy (↑) 0.168 ± 0.005 0.056 ± 0.010

MSP stab. incr. AUROC (↑) 0.642 ± 0.029 0.640 ± 0.005

LBA pK RMSE (↓) 1.453 ± 0.024 1.593 ± 0.043
(30%) global RP (↑) 0.549 ± 0.010 0.434 ± 0.025

global RS (↑) 0.558 ± 0.008 0.413 ± 0.024

LEP act./deact. AUROC (↑) 0.617 ± 0.054 0.718 ± 0.016


