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Abstract
The T-cell receptor (TCR) allows T-cells to recog-
nize and respond to antigens presented by infected
and diseased cells. However, due to TCRs’ stag-
gering diversity and complex binding dynamics,
it is challenging to predict which antigens a given
TCR may bind. Here, we present TCR-BERT,
which applies language modeling techniques to
learn a general, versatile representation of TCR
sequences, enabling numerous downstream appli-
cations.

1. Introduction
Mature T cells continuously monitor their surroundings for
signs of diseased cells and help activate other immune de-
fenses upon recognition. This recognition is mediated by
the T-cell receptor (TCR), which binds to antigens – short
peptide chains presented on the external surface of cells.
Healthy cells present antigens to identify themselves as be-
nign, whereas infected cells present antigens that signal
that they are diseased. In a viral infection, a cell might
present viral peptides as antigens, and in cancer, mutated
protein fragments called neoantigens are presented (Strønen
et al., 2016). Autoreactivity, or the aberrant recognition of
self-antigens as invaders can cause autoimmune disorders
like type 1 diabetes (Pugliese, 2017). Across these settings,
understanding TCRs’ binding and recognition of antigen se-
quences is key to understanding the underlying mechanisms
of disease and developing effective treatments.
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Despite the importance and therapeutic potential of T cells,
it is challenging to predict TCR-antigen recognition behav-
ior. The TCR itself is a dimeric protein with two hyper-
variable chains – typically α and β chains, encoded by the
TRA and TRB genes. These TRA and TRB sequences are
specified through recombination of the variable (V), diver-
sity (D), and junction (J) gene segments, as well as through
random insertions and deletions. This stochastic process
generates a staggering diversity of TCR sequences – often
estimated to be on the order of (hundreds of) millions for a
healthy human individual (Qi et al., 2014). This diversity
crucially lends the immune system its ability to recognize
a vast array of antigens, but also makes precisely under-
standing and predicting TCR-antigen specificity difficult.
This challenge is compounded by cross reactivity – a single
TCR often recognizes multiple antigens, and conversely, an
antigen may be recognized by multiple TCRs (Petrova et al.,
2012). Furthermore, only a small fraction of TCR sequences
are “labelled” with known antigen binding specificities, and
TRA-TRB sequence pairings are frequently unavailable.

With these challenges in mind, we developed TCR-BERT,
a large language model trained specifically on TCR amino
acids with TCR-specific pre-training tasks. Unlike previous
approaches to modeling TCR-antigen binding, which have
focused on training supervised models using relatively lim-
ited datasets of TCRs with known specificities, TCR-BERT
leverages the wealth of unlabeled TCR sequences for pre-
training to achieve state-of-the-art performance on a wide
variety of downstream tasks and applications. These range
from predicting the antigen binding preferences of a TCR
sequence to grouping TCRs with similar binding properties,
and extends to computationally generating synthetic TCRs
with engineered specificities.

2. Results
TCR-BERT takes a TCR sequence (e.g., CASR-
PDGRETQYF) and tokenizes it into individual residues
as input to a BERT transformer architecture (Bertoletti &
Tan, 2020) which is pre-trained on two objectives sequen-
tially. First, we pre-train TCR-BERT to predict masked
amino acids (MAA); this is analogous to the canonical
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masked language modeling objective in BERT and aims
to learn the grammar of what constitutes a valid TCR. This
is done using a dataset of (n = 88403) predominantly hu-
man TRA and TRB amino acid sequences (without flags
distinguishing them) from the VDJdb (Bagaev et al., 2020)
and PIRD (Zhang et al., 2020) databases. After MAA pre-
training, we leverage the fact that some TCRs are “labelled”
with known binding affinities to train TCR-BERT to pre-
dict antigen specificity given a TCR sequence. This takes
the form of a multi-class classification problem with 44
classes – each corresponding to a different antigen – us-
ing TRB sequences from the PIRD database (insufficient
labelled TRA sequences). This biologically-motivated anti-
gen classification pre-training task particularly improves
model performance (Appendix A).

2.1. Predicting antigen specificity

After pre-training, we can use TCR-BERT to generate em-
bedding vectors for TCR sequences. These embeddings can
be paired with a support vector machine (SVM) trained to
predict whether TCRs bind to a specific antigen. This ap-
proach is simple and produces strong results when available
data is in the order of tens to hundreds of examples.

For a subset (n = 26) of antigens used in our second classi-
fication pre-training step that have at least 20 known bind-
ing TCR sequences, we repeat classification pre-training
excluding that antigen and its associated TRBs. We then
use the resulting model to embed and classify the held-out
antigen’s binding TRBs against a background of naturally-
occurring human TCR sequences, which are assumed to be
non-binding and are sampled at 5 negatives to each bind-
ing sequence. The average area under the precision-recall
curve (AUPRC) across these antigens is 0.91, compared to
an AUPRC of 0.17 for a random classifier. We compare this
performance to that of a convolutional neural network – a
common architecture for classifying biological sequences
(Zou et al., 2019) – trained separately for each antigen and
find that TCR-BERT’s embeddings with an SVM provides
better performance for all but one antigen (Figure 1).

We repeat this “antigen cross-validation” process with sev-
eral other classifiers to contextualize TCR-BERT’s perfor-
mance. To evaluate the advantage of having a TCR-specific
transformer model, we used the same SVM classifier, but in-
stead used different protein transformers to embed the TRB
sequences. Compared to general protein transformers TAPE
(Rao et al., 2019) and ESM (Rives et al., 2021), TCR-BERT
provides superior performance classifying every evaluated
antigen, despite the fact that ESM and TAPE have much
larger training sets. We additionally evaluate TCR-BERT
against a previously published supervised model, SETE
(Tong et al., 2020), and again found that TCR-BERT pro-
vides improved performance in all antigens (Appendix B).
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Figure 1. Comparison of TCR-BERT embeddings with an SVM
classifier (y axis) against a supervised convolutional network (x
axis). Each dot indicates test AUPRC classifying TCRs that bind
or do not bind to a given antigen. Size of each dot corresponds
to the number of training points (21-231, single outlier of 4115);
p-value from two-sided Wilcoxon test.

We additionally sought to evaluate how TCR-BERT would
perform under patient-based data splits. As each individual’s
immune system independently generates TCR sequences,
cross-patient generalization is more indicative of how anti-
gen binding classifiers might be used in a clinical setting.
We focus on (n = 214) human TRB sequences binding to
the NP177 influenza A viral antigen, which was not seen
during pre-training (Glanville et al., 2017). We use one
patient’s data (n = 176 binding TRBs) for training, and 4
patients’ data (n = 38) for evaluation. Negative sequences
are sampled from naturally-occurring human TRBs at a ratio
of 5:1. Among all evaluated approaches (ESM with SVM,
TAPE with SVM, SETE, ConvNet), TCR-BERT provides
the best test AUPRC of 0.40 (Appendix B).

Finally, we explored how TCR-BERT could be used to build
classifiers in a more data-rich scenario that enables fine-
tuning the TCR-BERT transformer itself. We use a dataset
of (n = 17702, 13% positive binding) murine TRA-TRB
pairs with measured binding to the murine GP33 antigen
(Daniel et al., 2021). We create two copies of the TCR-
BERT architecture, each with weights initialized from the
MAA pre-training step. These two arms embed the TRA and
TRB sequences, respectively; these embeddings are concate-
nated and passed through a fully-connected classification
head, and this entire network is fine-tuned. We compare
this approach to a similar “two-armed” convolutional net-
work, with two convolutional networks each responsible
for embedding the TRA or TRB. We additionally bench-
mark against embedding the TRA and TRB using ESM
or TAPE, concatenating the embeddings, and training an
SVM. We also evaluate DeepTCR (Sidhom et al., 2021),
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a prior method for embedding TRA-TRB pairs, that we
train on murine TCRs (not including GP33-binders). We
also include logistic regression on a k-mer featurization of
the TRA and TRB sequences. Across all these methods,
TCR-BERT provides the best performance (Figure 2).

Overall, our results demonstrate that TCR-BERT provides
a strong, versatile foundation for building classifiers pre-
dicting antigen specificity. This can be achieved via using
TCR-BERT to generate sequence embeddings, which is typi-
cally optimal for smaller datasets, or by using larger datasets
to fine-tune TCR-BERT. We also show that TCR-BERT can
be flexibly used to predict binding for TRB sequences alone,
or for TRA/TRB sequence pairs.
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Figure 2. Binding/non-binding classification performance on
murine TRA-TRB pairs with measured binding to GP33. Across
all evaluated methods, TCR-BERT exhibits the best AUPRC.

2.2. Unsupervised exploration of TCRs

In many cases, researchers may not know a priori which
specific antigen(s) to predict TCR affinity for, necessitat-
ing more exploratory analyses of TCR sequence data. One
common task is identifying groups of TCRs likely to share
antigen binding properties, which can help identify motifs
and provides a more succinct representation of the TCR
repertoire than analyzing each unique TCR. TCR-BERT
facilitates such analyses via clustering its TCR sequence em-
beddings via an algorithm like Leiden (Traag et al., 2019).

We evaluate this using a subset (n = 2443) of aforemen-
tioned murine GP33 dataset containing TRA/TRB pairs.
When clustering these sequences, we ideally want most
input sequences to belong to a cluster (i.e., the clustering
meaningfully captures similarity between sequences), and
each cluster should be homogeneous (i.e., GP33-binding
sequences should not be clustered with non-binders). These
two ideas are quantified by two canonical metrics in TCR
clustering (Glanville et al., 2017): percent clustered (propor-

tion of sequences in a cluster with at least 3 constituent mem-
bers) and percent correctly clustered (clustering accuracy
when assigning each cluster’s “label” to be the dominant
binding state). We benchmark using Leiden to cluster TCR-
BERT’s TRB sequence embeddings1 against two popular
methods for grouping TCRs: GLIPH (Glanville et al., 2017)
and TCRDist3 (Mayer-Blackwell et al., 2021). Both these
prior methods use sequence heuristics to compare and group
TCRs. GLIPH can only process TRBs, whereas TCRDist3
can process TRBs or TRA/TRB pairs. For all methods, we
evaluate various clustering resolutions to evaluate the range
of percent clustered and percent correctly clustered (Figure
3). We observe that TCR-BERT provides a smooth tradeoff
between these metrics, whereas both GLIPH and TCRDist3
struggle to cluster a meaningful proportion of sequences
with above-random accuracy.
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Figure 3. Clustering performance of TCR-BERT and heuristic-
based methods GLIPH and TCRDist3 on the GP33 dataset. The
x and y axes capture the tradeoff between informativeness and
correctness of the clustering, respectively.

2.3. Attentions focus on biologically relevant residues

Not only does TCR-BERT excel for a range of common
downstream TCR analyses, it does so by recognizing biolog-
ically reasonable signals. To demonstrate this, we visualize
TCR-BERT’s attentions when predicting GP33 binding. Re-
call that this model was fine-tuned with two “arms” each
embedding the TRA or TRB. We examine (n = 157) test set
sequences of uniform length (12 and 14 residues for TRA
and TRB, respectively) and average each TRA/TRB arm’s
per-residue attentions across these examples. We compare
these attentions to distances from each TCR residue to the
closest antigen residue, using three experimentally profiled
structures profiling a similar GP33 system as references
(PDB IDs 5m00, 5m01, 5m02). Attention is anti-correlated

1Embedding both TRA and TRB sequences does not yield
different performance for TCR-BERT compared to TRB alone.
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with distance to the antigen for both the TRA and TRB
chains (Figure 4). This matches biological intuition that
physical contact between the TCR and the antigen is a pri-
mary mechanism for recognition.
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Figure 4. TCR-BERT attentions (orange), averaged across GP33
test sequences of uniform length, plotted against distances from
TCR to antigen from three similar empirical GP33 structures (hues
of blue). TCR-BERT assigns the greatest attention to residues
closest to the antigen – residues most likely to contact the antigen.

2.4. Designing novel TCR sequences using TCR-BERT

TCR-BERT also enables novel computational approaches
to experimental and clinical challenges involving TCRs.
Among these, one exciting domain is TCR engineering,
which seeks to redirect T cell specificity by introducing
synthetic TCR sequences into T-cells. In principle, this
should boost T cells’ ability to recognize specific antigens
and pathogens, enhancing the immune system’s response to
specific infections (Rapoport et al., 2015).

We generate novel TCR sequences targeting the murine
GP33 antigen using the version of TCR-BERT fine-tuned
to predict GP33 binding as an oracle. We start with 100
TRA-TRB pairs with no measured binding drawn from the
test set. For each sequence in the top half of predicted
binding affinities, we mask random residues and use TCR-
BERT’s masked amino acid predictions to generate new,
similar sequences that adhere to the “grammar” of natural

TCR sequences. We repeat this cycle, starting from the top
half of these generated sequences with strongest predicted
affinities, until we converge to a set of sequences with strong
binding (Figure 5(a), Appendix C).

To computationally validate these generated sequences, we
use BLAST (Altschul et al., 1990) to match the generated
TRBs against all known murine TRB sequences (insufficient
data to similarly compare TRA sequences). We find that our
generated sequences bear significant similarity to a set of
TRBs found to bind GP33 in a separate experiment not in-
cluded in training (Figure 5(b)). This strongly suggests that
we are able to generate biologically reasonable sequences
with desirable binding patterns.

TCR sequences
CAASGGSNNRIFF CASSLGGNQDTQYF
...   ...
CASRPTGDSYEQYF CAMREYSGTYQRF

Top 50% predicted binding TCRs
CALRSGGTNKYVL CASSDGGRGADQFF
...   ...
CAAGASSNTQYTF CASSLGRGPYELFF
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Figure 5. TCR engineering using TCR-BERT as a generative
model and oracle. We use this process to generate synthetic TCRs
highly similar to previously-characterized GP33 binders, starting
from sequences with no GP33 binding activity.

3. Discussion
TCR-BERT is a large language model trained to embed
T-cell receptor sequences. Compared to prior approaches,
TCR-BERT leverages unlabelled data to achieve state-of-
the-art performance across a wide variety of tasks, and
serves as a computational platform for future technologies.
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4. Software and Data
All code is available from https://github.com/
wukevin/tcr-bert. Pre-trained models are available;
see instructions on GitHub.
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A. Ablation of pre-training objectives reveals importance of biologically relevant tasks
We demonstrate that TCR-BERT provides superior performance compared to general-purpose protein transformer models,
specifically ESM (Rives et al., 2021) and TAPE (Rao et al., 2019). Since these models are architecturally similar to
TCR-BERT, they allow us to understand how our two pre-training tasks and our selection of data for pre-training contribute
to TCR-BERT’s performance advantage. We re-trained TCR-BERT using either only masked amino acid prediction, or
using only antigen classification pre-training, and evaluated the resulting models against ESM and TAPE. In all cases,
evaluation is done by taking the model’s fixed embedding and training an SVM classifier, followed by running the previously
described antigen cross-validation procedure (Figure 1).
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(a) TCR-BERT with MAA only vs. ESM
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(b) TCR-BERT with MAA only vs. TAPE

Figure 6. We evaluate TCR-BERT trained only with MAA against general protein transformer models. We observe a slight but significant
performance advantage compared to either ESM or TAPE (p-value calculated using a two-sided Wilcoxon test).
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(a) TCR-BERT with classification pre-training only vs. ESM
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Figure 7. We evaluate TCR-BERT trained with only antigen classification against general protein transformer models (p-value from
two-sided Wilcoxon test). We observe a larger performance gain than in Figure 6, which trains TCR-BERT with only masked amino acids.

We first evaluate TCR-BERT with only masked amino acid (MAA) prediction pre-training (Figure 6). We find that while
TCR-BERT’s performance with only MAA still exceeds that of either ESM or TAPE, their performance is much more
comparable. Since ESM and TAPE use a similar architecture and the same MAA pre-training objective, the primary
difference is the dataset of sequences used for MAA pre-training. TCR-BERT uses relatively few sequences, all of which
are TCRs (n = 88403) whereas ESM and TAPE are trained on much larger sets of general protein sequences (250 million
sequences for ESM). TCR-BERT’s performance advantage here suggests that using a pre-training dataset that is closer to
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the target application can yield a better embedding, even if this entails having much fewer training examples.

We then evaluate TCR-BERT with only the classification pre-training task (Figure 7) and find a much larger performance gap
compared to ESM and TAPE. Here, the model architectures are comparable, so this comparison focuses on the difference
between ESM and TAPE’s general MAA objective, compared to TCR-BERT’s TCR-antigen classification objective alone.
TCR-BERT’s TCR-specific classification pre-training task appears to yields a large performance advantage. This suggests
that having pre-training tasks tailored to target applications can yield a substantial performance advantage.

Overall, these results suggest that intentionally designing pre-training datasets and (particularly) tasks with downstream
applications in mind can yield performance improvements even if doing so entails having much fewer training examples –
as is the case here for TCR-BERT.

B. Comprehensive benchmarking of TCR-BERT’s classification performance
We compare TCR-BERT’s TCR-antigen binding classification performance to that of several methods using antigen cross-
validation. To study the advantage of TCR-BERT over using general purpose protein transformers, we evaluate TAPE
and ESM using the same approach of generating an embedding and training an SVM on that embedding. TCR-BERT
outperforms both TAPE and ESM, which suggests that TCR-BERT’s performance advantages are not simply architectural
and that having a TCR-specific pre-training is beneficial (Figure 8, see also Appendix A).
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Figure 8. TCR-BERT embeddings compared to embeddings from general protein transformers.
We also compared TCR-BERT against supervised approaches that do not leverage pre-training or transfer learning. In
addition to the ConvNet comparison (Figure 1), we evaluate SETE, a method that applies a tree-based classifier on k-mer
featurization of TCR sequences (Tong et al., 2020), and a simple logistic regression on k-mer featurization. We find that
TCR-BERT outperforms these methods as well.

Since each individual’s immune system generates a unique set of TCRs, we evaluated how these classifiers generalize across
patient-based splits using a set of TCRs binding NP177 (Glanville et al., 2017). We randomly sampled background human
TCRs at a ratio of 5:1. Using one individual’s data to train and evaluating on four patients’ data, we observe that protein
large language models (TCR-BERT, ESM and TAPE) that leverage pre-training tend to produce stronger generalizability
than supervised models (SETE, ConvNet), with TCR-BERT again being the most performant (Figure 10).

C. TCR engineering iterations
Our TCR engineering process uses TCR-BERT as both an oracle and a generative model. With each iteration, we sample the
top 50% of predicted binders, and use masked amino acid prediction to generate new similar sequences. We stop iterating
when all generated sequences have at least a predicted binding of 0.95. Our methodology results in a steady increase in
predicted binding of generated sequences without simply repeating sequences seen during training (Figure 11). This process
can be repeated with different initial sets of negative sequences to produce different final engineered sequences.
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(a) TCR-BERT compared to SETE
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Figure 9. TCR-BERT performance compared to supervised baselines. Both methods are built on k-mer featurizations.
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Figure 10. Performance of TCR-BERT and comparison methods when trained on one patient’s TCRs and evaluated on 4 different patients’
TCRs. Solid lines indicate large language models trained on protein sequences; dotted lines indicate supervised models.
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Figure 11. Over each iteration of TCR engineering, we increase the predicted likelihood of binding (a) without simply regurgitating
training sequences (b).


